相关文献:
数据结构与算法(一):基础理论
数据结构与算法(二):线性表的实现
数据结构与算法(三):线性表算法设计练习
数据结构与算法(四):斐波那契数列
数据结构与算法(五):LRU
数据结构与算法(六):栈
数据结构与算法(七):栈/队列的算法解题思想
数据结构与算法(八):队列
数据结构与算法(九):树形结构/二叉树/线索化二叉树
数据结构与算法(十):哈夫曼树
数据结构与算法(十一):图形结构
数据结构与算法(十二):图的应用-最小生成树-Prim/Kruskal
数据结构与算法(十三):图的应用-最短路径-Dijkstra/Floyd
数据结构与算法(十四):图的应用-拓扑排序/关键路径
数据结构与算法(十五):查找算法-顺序查找/二分查找/二叉搜索树/平衡二叉树/散列表查找
数据结构与算法(十六):排序算法
本章节研究内容:
1.图形结构的定义
2.图形的存储问题(邻接矩阵/邻接表 的实现)
3.图形的深度优先遍历的实现
4.图形的广度优先遍历的实现
一、图形结构的定义
1.什么是图
图形结构是一种比树形结构更复杂的非线性结构。在图形结构中,任意两个结点之间都可能相关,即结点之间的邻接关系可以是任意的。(非常类似于社会关系网)

图(Graph) 是由顶点的有穷⾮空集合 和 顶点之间边的集合组成. 通常表示为: G(V,E). 其中,G表示⼀个图, V是图G中的顶点集合,E 是图G中边的集合。
注意:
1.在图形中不允许没有顶点;(线性表可以没元素 树形结构可以没节点)
2.任意的顶点都可以作为起点。
- 线性表里相邻数据之间是有线性关系(一对一);
- 树结构相邻的两层节点是有层次关系(一对多);
- 图结构的任意两顶点之间都可能存在关系(多对多)。
2.图的定义
无向边:比如A能到C,C也能到A,这条边没有方向
无向图:各个顶点用无向边连接起来的图 叫无向图

有向边:比如C能到A,A不能到C,这条边有方向
有向图:各个顶点用有向边链接起来的图 叫有向图

无向完全图:任意两个顶点之间都会存在无向边 叫无向完全图

有向完全图:任意两个顶点之间都会存在有双向边 叫有向完全图

网:图的顶点之间存在权值就叫网

连通图:图的所有节点都通过边达到连通
非连通图:图的部分节点未得到连通(断了边的)
二、邻接矩阵存储图
1.邻接矩阵存储

-
a.使用邻接矩阵去存储
无向连接图图1:

(想要存储图,其实就是简单的使用一维数组和二维数组的结合)
图1有四个顶点V0、V1、V2、V3,可以使用顶点一维数组装起来

顶点之间的边,则使用邻接矩阵来描述顶点之间的关系。如下:

对于一个无向图的邻接矩阵,它是一个对称的。
注意:这个邻接矩阵的对角线上的值都为0,因为顶点V0它不指向自己。
并且一维数组与二位数组的顶点下标是要对得上号的。
有N个顶点,就创建N*N大小的邻接矩阵。
-
b.使用邻接矩阵去存储
有向连接图图2:

那么它对应的顶点一维数组和邻接矩阵:

-
c.使用邻接矩阵去存储
网图3:

那么它对应的顶点一维数组和邻接矩阵:

注意:
对角线上的值依旧赋值0
顶点没有指向关系的赋值为∞
顶点有指向关系的赋值为权值
2.邻接矩阵存储图数据结构
(举例存储无向图)
- a. 数据结构设计
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXVEX 100 /* 最大顶点数,应由用户定义 */
#define INFINITYC 0
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef char VertexType; /* 顶点类型应由用户定义 */
typedef int EdgeType; /* 边上的权值类型应由用户定义 */
// 图的数据结构 = 顶点表+邻接矩阵
typedef struct {
VertexType vexs[MAXVEX]; /* 顶点表 */
EdgeType arc[MAXVEX][MAXVEX];/* 邻接矩阵,可看作边表 */
int numNodes, numEdges; /* 图中当前的顶点数和边数 */
}MGraph;
- b. 图的存储
使用自己输入的方式去创建图
// 根据输入数据去 创建图
void CreateMGraph(MGraph *G) {
int i,j,k,w;
printf("输入顶点数和边数:\n");
//1. 输入顶点数/边数
scanf("%d,%d",&G->numNodes,&G->numEdges);
printf("顶点数:%d,边数:%d\n",G->numNodes,G->numEdges);
//2.输入顶点信息/顶点表
for(i = 0; i<= G->numNodes;i++)
scanf("%c",&G->vexs[i]);
//3.初始化邻接矩阵
for(i = 0; i < G->numNodes;i++)
for(j = 0; j < G->numNodes;j++)
G->arc[i][j] = INFINITYC; // 设置默认值
//4.为每个顶点去输入边表信息 - 矩阵顶点的指向关系
for(k = 0; k < G->numEdges;k++){
printf("输入边(vi,vj)上的下标i,下标j,权w\n");
scanf("%d,%d,%d",&i,&j,&w); // 输入位置ij与权值w
// 在对应的位置设置权值
G->arc[i][j] = w;
//如果无向图,矩阵对称;(有向图请注释)
G->arc[j][i] = G->arc[i][j];
}
/*5.打印邻接矩阵*/
for (int i = 0; i < G->numNodes; i++) {
printf("\n");
for (int j = 0; j < G->numNodes; j++) {
printf("%d ",G->arc[i][j]);
}
}
printf("\n");
}
运行:
int main(void){
printf("邻接矩阵实现图的存储\n");
/*图的存储-邻接矩阵*/
MGraph G;
CreateMGraph(&G);
return 0;
}
三、邻接表存储图
1.邻接表存储图
当我们使用邻接矩阵去存储图的时候,二维数组里边是存储顶点与边的关系的,可以发现在二维数组里边很多空间是浪费的,是顶点之间没有关系的缘故,这样的顺序存储造成的空间浪费。
无向完全图和有向完全图是更适合使用邻接矩阵的,因为它每个顶点之间都有关系,但也会造成对角线的位置浪费内存。
故而我们使用链式存储的方式,即邻接表的方式去存储图(一维数组+链表)。这样的存储方式适用于任何的图。
-
a.使用邻接表去存储
无向连接图图4:

一维数组存储各个顶点 V0、V1、V2、V3:

而各个顶点之间的关系,则存储在链表中,注意的是图是没有顺序可言的,所以链表中的数据也是没有前后的。
-
b.使用邻接表去存储
有向连接图图5:

那么它对应的顶点一维数组和邻接表:

这个有向图的逆邻接表,了解一下:

-
c.使用邻接表去存储
网图6:

2.邻接矩阵存储图数据结构
- a.数据结构设计

#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define M 100
#define true 1
#define false 0
typedef char Element;
typedef int BOOL;
//邻接表的节点
typedef struct Node{
int adj_vex_index; //弧头的下标,也就是被指向的下标
Element data; //权重值
struct Node * next; //边指针
}EdgeNode;
//顶点节点表
typedef struct vNode{
Element data; //顶点的权值
EdgeNode * firstedge; //顶点下一个是谁?
}VertexNode, Adjlist[M];
//总图的一些信息
typedef struct Graph{
Adjlist adjlist; //顶点表
int arc_num; //边的个数
int node_num; //节点个数
BOOL is_directed; //是不是有向图
}Graph, *GraphLink;
- b. 图的存储
使用自己输入的方式去创建图
// 根据输入数据去 创建图
void creatGraph(GraphLink *g){
int i,j,k;
EdgeNode *p;
//1. 顶点,边,是否有向
printf("输入顶点数目,边数和有向?:\n");
scanf("%d %d %d", &(*g)->node_num, &(*g)->arc_num, &(*g)->is_directed);
//2.顶点表
printf("输入顶点信息:\n");
for (i = 0; i < (*g)->node_num; i++) {
getchar();
scanf("%c", &(*g)->adjlist[i].data);
(*g)->adjlist[i].firstedge = NULL;
}
//3.
printf("输入边信息:\n");
for (k = 0; k < (*g)->arc_num; k++){
getchar();
scanf("%d %d", &i, &j);
//①新建一个节点
p = (EdgeNode *)malloc(sizeof(EdgeNode));
//②弧头的下标
p->adj_vex_index = j;
//③头插法插进去,插的时候要找到弧尾,那就是顶点数组的下标i
p->next = (*g)->adjlist[i].firstedge;
//④将顶点数组[i].firstedge 设置为p
(*g)->adjlist[i].firstedge = p;
//j->i
if(!(*g)->is_directed)
{
// j -----> i
//①新建一个节点
p = (EdgeNode *)malloc(sizeof(EdgeNode));
//②弧头的下标i
p->adj_vex_index = i;
//③头插法插进去,插的时候要找到弧尾,那就是顶点数组的下标i
p->next = (*g)->adjlist[j].firstedge;
//④将顶点数组[i].firstedge 设置为p
(*g)->adjlist[j].firstedge = p;
}
}
}
// 输出图
void putGraph(GraphLink g){
int i;
printf("邻接表中存储信息:\n");
//遍历一遍顶点坐标,每个再进去走一次
for (i = 0; i < g->node_num; i++) {
EdgeNode * p = g->adjlist[i].firstedge;
while (p) {
printf("%c->%c ", g->adjlist[i].data, g->adjlist[p->adj_vex_index].data);
p = p->next;
}
printf("\n");
}
}
运行:
int main(int argc, const char * argv[]) {
// insert code here...
printf("邻接表实现图的存储\n");
/*
邻接表实现图的存储
输入顶点数目,边数和有向?:
4 5 0
输入顶点信息:
0 1 2 3
输入边信息:
0 1 0 2 0 3 2 1 2 3
邻接表中存储信息:
0->3 0->2 0->1
1->2 1->0
2->3 2->1 2->0
3->2 3->0
*/
/*
邻接表实现图的存储
输入顶点数目,边数和有向?:
4 5 1
输入顶点信息:
0 1 2 3
输入边信息:
1 0 1 2 2 1 2 0 0 3
邻接表中存储信息:
0->3
1->2 1->0
2->0 2->1
*/
GraphLink g = (Graph *)malloc(sizeof(Graph));
creatGraph(&g);
putGraph(g);
return 0;
}
四、图形的深度优先遍历的实现
- 图是没有顺序的,从哪个顶点出发都是可以的
- 遍历过的顶点需要做标记,说明被遍历过
- 深度遍历是从当前顶点到第一个顶点,然后第一个顶点作为当前顶点

- 遍历直到当前顶点所连接的顶点没有被标记过,再去逐个回溯到上一个顶点,找到还未被遍历的顶点

由于图形存储是顺序(邻接矩阵)和链式(邻接表),所以我们也分两种逻辑去实现。
1.邻接矩阵深度遍历

邻接矩阵的数据结构:
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Boolean; /* Boolean是布尔类型,其值是TRUE或FALSE */
typedef char VertexType; /* 顶点类型应由用户定义 */
typedef int EdgeType; /* 边上的权值类型应由用户定义 */
#define MAXSIZE 9 /* 存储空间初始分配量 */
#define MAXEDGE 15
#define MAXVEX 9
#define INFINITYC 65535
typedef struct {
VertexType vexs[MAXVEX]; /* 顶点表 */
EdgeType arc[MAXVEX][MAXVEX];/* 邻接矩阵,可看作边表 */
int numVertexes, numEdges; /* 图中当前的顶点数和边数 */
}MGraph;
构建图的邻接矩阵,如下图:

/*4.1 构建一个邻接矩阵*/
void CreateMGraph(MGraph *G){
int i, j;
//1. 确定图的顶点数以及边数
G->numEdges=15;
G->numVertexes=9;
/*2.读入顶点信息,建立顶点表 */
G->vexs[0]='A';
G->vexs[1]='B';
G->vexs[2]='C';
G->vexs[3]='D';
G->vexs[4]='E';
G->vexs[5]='F';
G->vexs[6]='G';
G->vexs[7]='H';
G->vexs[8]='I';
/*3. 初始化图中的边表*/
for (i = 0; i < G->numVertexes; i++)
{
for ( j = 0; j < G->numVertexes; j++)
{
G->arc[i][j]=0;
}
}
/*4.将图中的连接信息输入到边表中*/
G->arc[0][1]=1;
G->arc[0][5]=1;
G->arc[1][2]=1;
G->arc[1][8]=1;
G->arc[1][6]=1;
G->arc[2][3]=1;
G->arc[2][8]=1;
G->arc[3][4]=1;
G->arc[3][7]=1;
G->arc[3][6]=1;
G->arc[3][8]=1;
G->arc[4][5]=1;
G->arc[4][7]=1;
G->arc[5][6]=1;
G->arc[6][7]=1;
/*5.无向图是对称矩阵.构成对称*/
for(i = 0; i < G->numVertexes; i++)
{
for(j = i; j < G->numVertexes; j++)
{
G->arc[j][i] =G->arc[i][j];
}
}
}
邻接矩阵深度遍历图形:
- 1.将图的顶点和边信息输⼊到图结构中;
- 2.创建⼀个visited 数组,⽤来标识顶点是否已经被遍历过.
- 3.初始化visited 数组,将数组中元素置为FALSE
- 4.选择顶点开始遍历.(注意⾮连通图的情况)
- 5.进⼊递归; 打印i 对应的顶点信息. 并将该顶点标识为已遍历.
- 6.循环遍历边表,判断当前arc[i][j] 是否等于1,并且当前该顶点没有被遍历过,则继续递归DFS;
/*4.2 DFS遍历*/
Boolean visited[MAXVEX]; /* 访问标志的数组 */
//1. 标识顶点是否被标记过;
//2. 选择从某一个顶点开始(注意:非连通图的情况)
//3. 进入递归,打印i点信息,标识; 边表
//4. [i][j] 是否等于1,没有变遍历过visted
void DFS(MGraph G,int i){
//1.
visited[i] = TRUE;
printf("%c",G.vexs[i]);
//2.0~numVertexes
for(int j = 0; j < G.numVertexes;j++){
if(G.arc[i][j] == 1 && !visited[j])
DFS(G, j);
}
}
void DFSTravese(MGraph G){
//1.初始化
for(int i=0;i<G.numVertexes;i++){
visited[i] = FALSE;
}
//2.某一个顶点
for(int i = 0;i<G.numVertexes;i++){
if(!visited[i]){
DFS(G, i);
}
}
}
邻接矩阵深度遍历测试:
int main(int argc, const char * argv[]) {
// insert code here...
printf("邻接矩阵的深度优先遍历!\n");
MGraph G;
CreateMGraph(&G);
DFSTravese(G);
printf("\n");
return 0;
}
2.邻接表深度遍历
注意:同一张图邻接矩阵存储和邻接表存储所遍历出来的顺序也有可能是不一样的,因为图是无序的。

邻接表的数据结构:
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 9 /* 存储空间初始分配量 */
#define MAXEDGE 15
#define MAXVEX 9
#define INFINITYC 65535
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Boolean; /* Boolean是布尔类型,其值是TRUE或FALSE */
typedef char VertexType; /* 顶点类型应由用户定义 */
typedef int EdgeType; /* 边上的权值类型应由用户定义 */
/* 邻接矩阵结构 */
typedef struct {
VertexType vexs[MAXVEX]; /* 顶点表 */
EdgeType arc[MAXVEX][MAXVEX];/* 邻接矩阵,可看作边表 */
int numVertexes, numEdges; /* 图中当前的顶点数和边数 */
}MGraph;
/* 邻接表结构****************** */
typedef struct EdgeNode { /* 边表结点 */
int adjvex; /* 邻接点域,存储该顶点对应的下标 */
int weight; /* 用于存储权值,对于非网图可以不需要 */
struct EdgeNode *next; /* 链域,指向下一个邻接点 */
}EdgeNode;
typedef struct VertexNode { /* 顶点表结点 */
int in; /* 顶点入度 */
char data; /* 顶点域,存储顶点信息 */
EdgeNode *firstedge;/* 边表头指针 */
}VertexNode, AdjList[MAXVEX];
typedef struct {
AdjList adjList;
int numVertexes,numEdges; /* 图中当前顶点数和边数 */
}graphAdjList,*GraphAdjList;
构建图的邻接表 ,如下图:


/*4.1 构建一个邻接矩阵*/
void CreateMGraph(MGraph *G) {
int i, j;
//1. 确定图的顶点数以及边数
G->numEdges=15;
G->numVertexes=9;
/*2.读入顶点信息,建立顶点表 */
G->vexs[0]='A';
G->vexs[1]='B';
G->vexs[2]='C';
G->vexs[3]='D';
G->vexs[4]='E';
G->vexs[5]='F';
G->vexs[6]='G';
G->vexs[7]='H';
G->vexs[8]='I';
/*3. 初始化图中的边表*/
for (i = 0; i < G->numVertexes; i++)
{
for ( j = 0; j < G->numVertexes; j++)
{
G->arc[i][j]=0;
}
}
/*4.将图中的连接信息输入到边表中*/
G->arc[0][1]=1;
G->arc[0][5]=1;
G->arc[1][2]=1;
G->arc[1][8]=1;
G->arc[1][6]=1;
G->arc[2][3]=1;
G->arc[2][8]=1;
G->arc[3][4]=1;
G->arc[3][7]=1;
G->arc[3][6]=1;
G->arc[3][8]=1;
G->arc[4][5]=1;
G->arc[4][7]=1;
G->arc[5][6]=1;
G->arc[6][7]=1;
/*5.无向图是对称矩阵.构成对称*/
for(i = 0; i < G->numVertexes; i++)
{
for(j = i; j < G->numVertexes; j++)
{
G->arc[j][i] =G->arc[i][j];
}
}
}
/*4.2 利用邻接矩阵构建邻接表*/
void CreateALGraph(MGraph G,GraphAdjList *GL){
//1.创建邻接表,并且设计邻接表的顶点数以及弧数
*GL = (GraphAdjList)malloc(sizeof(graphAdjList));
(*GL)->numVertexes = G.numVertexes;
(*GL)->numEdges = G.numEdges;
//2. 从邻接矩阵中将顶点信息输入
for (int i = 0; i < G.numVertexes; i++) {
//顶点入度为0
(*GL)->adjList[i].in = 0;
//顶点信息
(*GL)->adjList[i].data = G.vexs[i];
//顶点边表置空
(*GL)->adjList[i].firstedge = NULL;
}
//3. 建立边表
EdgeNode *e;
for (int i = 0; i < G.numVertexes; i++) {
for (int j = 0; j < G.numVertexes; j++) {
if (G.arc[i][j] == 1) {
//创建边表中的邻近结点 i->j
e = (EdgeNode *)malloc(sizeof(EdgeNode));
//邻接序号为j
e->adjvex = j;
//将当前结点的指向adjList[i]的顶点边表上
e->next = (*GL)->adjList[i].firstedge;
(*GL)->adjList[i].firstedge = e;
//顶点j 上的入度++;
(*GL)->adjList[j].in++;
// //创建边表中的邻近结点 j->i
// e = (EdgeNode *)malloc(sizeof(EdgeNode));
// //邻接序号为j
// e->adjvex = i;
// //将当前结点的指向adjList[i]的顶点边表上
// e->next = (*GL)->adjList[j].firstedge;
// (*GL)->adjList[j].firstedge = e;
// //顶点j 上的入度++;
// (*GL)->adjList[i].in++;
}
}
}
}
邻接表深度遍历图形:
- 1.利⽤邻接矩阵将信息存储到邻接表中
- 2.创建⼀个visited 数组,⽤来标识顶点是否已经被遍历过.
- 3.初始化visited 数组,将数组中元素置为FALSE
- 4.选择顶点开始遍历.(注意⾮连通图的情况)
- 5.进⼊递归; 打印i 对应的顶点信息. 并将该顶点标识为已遍历.
- 6.循环遍历边表,判断当前顶点 是否等于1,并且当前该顶点没有被遍历过,则继续递归DFS;
Boolean visited[MAXSIZE]; /* 访问标志的数组 */
/* 邻接表的深度优先递归算法 */
/* 邻接表的深度遍历操作 */
void DFSTraverse(GraphAdjList GL) {
//1. 将访问记录数组默认置为FALSE
for (int i = 0; i < GL->numVertexes; i++) {
/*初始化所有顶点状态都是未访问过的状态*/
visited[i] = FALSE;
}
//2. 选择一个顶点开始DFS遍历. 例如A
for(int i = 0; i < GL->numVertexes; i++)
//对未访问过的顶点调用DFS, 若是连通图则只会执行一次.
if(!visited[i])
DFS(GL, i);
}
void DFS(GraphAdjList GL, int i) {
EdgeNode *p;
visited[i] = TRUE;
//2.打印顶点 A
printf("%c ",GL->adjList[i].data);
p = GL->adjList[i].firstedge;
//3.
while (p) {
if(!visited[p->adjvex])
DFS(GL,p->adjvex);
p = p->next;
}
}
测试代码:
int main(int argc, const char * argv[]) {
// insert code here...
printf("邻接表的深度优先遍历!\n");
MGraph G;
GraphAdjList GL;
CreateMGraph(&G);
CreateALGraph(G,&GL);
DFSTraverse(GL);
printf("\n");
return 0;
}
五、图形的广度优先遍历的实现
将图看成一层一层的(有点像树的层序遍历)

- 1.把根节点放到队列的末尾
- 2.每次从队列的头部取出⼀个元素,查看这个元素所有的下⼀级元素,把它们放到队列的末尾。并把这个元素记为它下⼀级元素的前驱
- 3.找到所要找的元素时结束程序
- 4.如果遍历整个树还没有找到,结束程序

1.邻接矩阵广度遍历
- 邻接矩阵的构建图
#include <stdio.h>
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Boolean; /* Boolean是布尔类型,其值是TRUE或FALSE */
typedef char VertexType; /* 顶点类型应由用户定义 */
typedef int EdgeType; /* 边上的权值类型应由用户定义 */
#define MAXSIZE 9 /* 存储空间初始分配量 */
#define MAXEDGE 15
#define MAXVEX 9
#define INFINITYC 65535
typedef struct {
VertexType vexs[MAXVEX]; /* 顶点表 */
EdgeType arc[MAXVEX][MAXVEX];/* 邻接矩阵,可看作边表 */
int numVertexes, numEdges; /* 图中当前的顶点数和边数 */
}MGraph;
/*4.1 构建一个邻接矩阵*/
void CreateMGraph(MGraph *G) {
int i, j;
//1. 确定图的顶点数以及边数
G->numEdges=15;
G->numVertexes=9;
/*2.读入顶点信息,建立顶点表 */
G->vexs[0]='A';
G->vexs[1]='B';
G->vexs[2]='C';
G->vexs[3]='D';
G->vexs[4]='E';
G->vexs[5]='F';
G->vexs[6]='G';
G->vexs[7]='H';
G->vexs[8]='I';
/*3. 初始化图中的边表*/
for (i = 0; i < G->numVertexes; i++) {
for ( j = 0; j < G->numVertexes; j++) {
G->arc[i][j]=0;
}
}
/*4.将图中的连接信息输入到边表中*/
G->arc[0][1]=1;
G->arc[0][5]=1;
G->arc[1][2]=1;
G->arc[1][8]=1;
G->arc[1][6]=1;
G->arc[2][3]=1;
G->arc[2][8]=1;
G->arc[3][4]=1;
G->arc[3][7]=1;
G->arc[3][6]=1;
G->arc[3][8]=1;
G->arc[4][5]=1;
G->arc[4][7]=1;
G->arc[5][6]=1;
G->arc[6][7]=1;
/*5.无向图是对称矩阵.构成对称*/
for(i = 0; i < G->numVertexes; i++) {
for(j = i; j < G->numVertexes; j++) {
G->arc[j][i] =G->arc[i][j];
}
}
}
- 需要一个队列结构
/*
4.2 ***需要用到的队列结构与相关功能函数***
*/
/* 循环队列的顺序存储结构 */
typedef struct {
int data[MAXSIZE];
int front; /* 头指针 */
int rear; /* 尾指针,若队列不空,指向队列尾元素的下一个位置 */
}Queue;
/* 初始化一个空队列Q */
Status InitQueue(Queue *Q) {
Q->front=0;
Q->rear=0;
return OK;
}
/* 若队列Q为空队列,则返回TRUE,否则返回FALSE */
Status QueueEmpty(Queue Q) {
if(Q.front==Q.rear) /* 队列空的标志 */
return TRUE;
else
return FALSE;
}
/* 若队列未满,则插入元素e为Q新的队尾元素 */
Status EnQueue(Queue *Q,int e) {
if ((Q->rear+1)%MAXSIZE == Q->front) /* 队列满的判断 */
return ERROR;
Q->data[Q->rear]=e; /* 将元素e赋值给队尾 */
Q->rear=(Q->rear+1)%MAXSIZE;/* rear指针向后移一位置, */
/* 若到最后则转到数组头部 */
return OK;
}
/* 若队列不空,则删除Q中队头元素,用e返回其值 */
Status DeQueue(Queue *Q,int *e) {
if (Q->front == Q->rear) /* 队列空的判断 */
return ERROR;
*e=Q->data[Q->front]; /* 将队头元素赋值给e */
Q->front=(Q->front+1)%MAXSIZE; /* front指针向后移一位置, */
/* 若到最后则转到数组头部 */
return OK;
}
/******** Queue End **************/
- 邻接矩阵广度优先遍历
/*4.3 邻接矩阵广度优先遍历-代码实现*/
Boolean visited[MAXVEX]; /* 访问标志的数组 */
void BFSTraverse(MGraph G) {
int temp = 0;
//1.初始化队列
Queue Q;
InitQueue(&Q);
//2.将访问标志数组全部置为"未访问状态FALSE"
for (int i = 0 ; i < G.numVertexes; i++) {
visited[i] = FALSE;
}
//3.对遍历邻接表中的每一个顶点(对于连通图只会执行1次,这个循环是针对非连通图)
for (int i = 0 ; i < G.numVertexes; i++) {
if(!visited[i]){
visited[i] = TRUE;
printf("%c ",G.vexs[i]);
//4. 入队
EnQueue(&Q, i);
while (!QueueEmpty(Q)) {
//出队
DeQueue(&Q, &i);
for (int j = 0; j < G.numVertexes; j++) {
if(G.arc[i][j] == 1 && !visited[j]) {
visited[j] = TRUE;
printf("%c ",G.vexs[j]);
EnQueue(&Q, j);
}
}
}
}
}
}
测试代码
int main(int argc, const char * argv[]) {
// insert code here...
printf("邻接矩阵广度优先遍历!\n");
MGraph G;
CreateMGraph(&G);
BFSTraverse(G);
printf("\n");
return 0;
}
2.邻接表广度遍历
- 邻接表的构建图
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 9 /* 存储空间初始分配量 */
#define MAXEDGE 15
#define MAXVEX 9
#define INFINITYC 65535
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Boolean; /* Boolean是布尔类型,其值是TRUE或FALSE */
typedef char VertexType; /* 顶点类型应由用户定义 */
typedef int EdgeType; /* 边上的权值类型应由用户定义 */
/* 邻接矩阵结构 */
typedef struct
{
VertexType vexs[MAXVEX]; /* 顶点表 */
EdgeType arc[MAXVEX][MAXVEX];/* 邻接矩阵,可看作边表 */
int numVertexes, numEdges; /* 图中当前的顶点数和边数 */
}MGraph;
/* 邻接表结构****************** */
typedef struct EdgeNode /* 边表结点 */
{
int adjvex; /* 邻接点域,存储该顶点对应的下标 */
int weight; /* 用于存储权值,对于非网图可以不需要 */
struct EdgeNode *next; /* 链域,指向下一个邻接点 */
}EdgeNode;
typedef struct VertexNode /* 顶点表结点 */
{
int in; /* 顶点入度 */
char data; /* 顶点域,存储顶点信息 */
EdgeNode *firstedge;/* 边表头指针 */
}VertexNode, AdjList[MAXVEX];
typedef struct
{
AdjList adjList;
int numVertexes,numEdges; /* 图中当前顶点数和边数 */
}graphAdjList,*GraphAdjList;
/*4.1 构建一个邻接矩阵*/
void CreateMGraph(MGraph *G)
{
int i, j;
//1. 确定图的顶点数以及边数
G->numEdges=15;
G->numVertexes=9;
/*2.读入顶点信息,建立顶点表 */
G->vexs[0]='A';
G->vexs[1]='B';
G->vexs[2]='C';
G->vexs[3]='D';
G->vexs[4]='E';
G->vexs[5]='F';
G->vexs[6]='G';
G->vexs[7]='H';
G->vexs[8]='I';
/*3. 初始化图中的边表*/
for (i = 0; i < G->numVertexes; i++)
{
for ( j = 0; j < G->numVertexes; j++)
{
G->arc[i][j]=0;
}
}
/*4.将图中的连接信息输入到边表中*/
G->arc[0][1]=1;
G->arc[0][5]=1;
G->arc[1][2]=1;
G->arc[1][8]=1;
G->arc[1][6]=1;
G->arc[2][3]=1;
G->arc[2][8]=1;
G->arc[3][4]=1;
G->arc[3][7]=1;
G->arc[3][6]=1;
G->arc[3][8]=1;
G->arc[4][5]=1;
G->arc[4][7]=1;
G->arc[5][6]=1;
G->arc[6][7]=1;
/*5.无向图是对称矩阵.构成对称*/
for(i = 0; i < G->numVertexes; i++)
{
for(j = i; j < G->numVertexes; j++)
{
G->arc[j][i] =G->arc[i][j];
}
}
}
/*4.2 利用邻接矩阵构建邻接表*/
void CreateALGraph(MGraph G,GraphAdjList *GL){
//1.创建邻接表,并且设计邻接表的顶点数以及弧数
*GL = (GraphAdjList)malloc(sizeof(graphAdjList));
(*GL)->numVertexes = G.numVertexes;
(*GL)->numEdges = G.numEdges;
//2. 从邻接矩阵中将顶点信息输入
for (int i = 0; i < G.numVertexes; i++) {
//顶点入度为0
(*GL)->adjList[i].in = 0;
//顶点信息
(*GL)->adjList[i].data = G.vexs[i];
//顶点边表置空
(*GL)->adjList[i].firstedge = NULL;
}
//3. 建立边表
EdgeNode *e;
for (int i = 0; i < G.numVertexes; i++) {
for (int j = 0; j < G.numVertexes; j++) {
if (G.arc[i][j] == 1) {
//创建边表中的邻近结点 i->j
e = (EdgeNode *)malloc(sizeof(EdgeNode));
//邻接序号为j
e->adjvex = j;
//将当前结点的指向adjList[i]的顶点边表上
e->next = (*GL)->adjList[i].firstedge;
(*GL)->adjList[i].firstedge = e;
//顶点j 上的入度++;
(*GL)->adjList[j].in++;
// //创建边表中的邻近结点 j->i
// e = (EdgeNode *)malloc(sizeof(EdgeNode));
// //邻接序号为j
// e->adjvex = i;
// //将当前结点的指向adjList[i]的顶点边表上
// e->next = (*GL)->adjList[j].firstedge;
// (*GL)->adjList[j].firstedge = e;
// //顶点j 上的入度++;
// (*GL)->adjList[i].in++;
}
}
}
}
- 需要一个队列结构
/*
5.2 ***需要用到的队列结构与相关功能函数***
*/
/* 循环队列的顺序存储结构 */
typedef struct
{
int data[MAXSIZE];
int front; /* 头指针 */
int rear; /* 尾指针,若队列不空,指向队列尾元素的下一个位置 */
}Queue;
/* 初始化一个空队列Q */
Status InitQueue(Queue *Q)
{
Q->front=0;
Q->rear=0;
return OK;
}
/* 若队列Q为空队列,则返回TRUE,否则返回FALSE */
Status QueueEmpty(Queue Q)
{
if(Q.front==Q.rear) /* 队列空的标志 */
return TRUE;
else
return FALSE;
}
/* 若队列未满,则插入元素e为Q新的队尾元素 */
Status EnQueue(Queue *Q,int e)
{
if ((Q->rear+1)%MAXSIZE == Q->front) /* 队列满的判断 */
return ERROR;
Q->data[Q->rear]=e; /* 将元素e赋值给队尾 */
Q->rear=(Q->rear+1)%MAXSIZE;/* rear指针向后移一位置, */
/* 若到最后则转到数组头部 */
return OK;
}
/* 若队列不空,则删除Q中队头元素,用e返回其值 */
Status DeQueue(Queue *Q,int *e)
{
if (Q->front == Q->rear) /* 队列空的判断 */
return ERROR;
*e=Q->data[Q->front]; /* 将队头元素赋值给e */
Q->front=(Q->front+1)%MAXSIZE; /* front指针向后移一位置, */
/* 若到最后则转到数组头部 */
return OK;
}
/* *********************** Queue End ******************************* */
- 邻接表广度优先遍历
/*5.3 邻接表广度优先遍历*/
Boolean visited[MAXSIZE]; /* 访问标志的数组 */
void BFSTraverse(GraphAdjList GL){
//1.创建结点
EdgeNode *p;
Queue Q;
InitQueue(&Q);
//2.将访问标志数组全部置为"未访问状态FALSE"
for(int i = 0; i < GL->numVertexes; i++)
visited[i] = FALSE;
//3.对遍历邻接表中的每一个顶点(对于连通图只会执行1次,这个循环是针对非连通图)
for(int i = 0 ;i < GL->numVertexes;i++){
//4.判断当前结点是否被访问过.
if(!visited[i]){
visited[i] = TRUE;
//打印顶点
printf("%c ",GL->adjList[i].data);
EnQueue(&Q, i);
while (!QueueEmpty(Q)) {
DeQueue(&Q, &i);
p = GL->adjList[i].firstedge;
while (p) {
//判断
if(!visited[p->adjvex]){
visited[p->adjvex] = TRUE;
printf("%c ",GL->adjList[p->adjvex].data);
EnQueue(&Q, p->adjvex);
}
p = p->next;
}
}
}
}
}
测试代码:
int main(int argc, const char * argv[]) {
// insert code here...
printf("邻接表广度优先遍历\n");
MGraph G;
GraphAdjList GL;
CreateMGraph(&G);
CreateALGraph(G,&GL);
BFSTraverse(GL);
printf("\n");
return 0;
}