概率论与数理统计 第五章 大数定律及中心极限定理

课前导读

概率论是研究大量试验后呈现出的统计规律性的一门理论。
数学中研究大量的工具是极限。
因此这一章学习概率论中的极限定理。

第一节 大数定律

随着试验次数的增大,事件的频率逐步稳定到事件的概率。意味着随着试验次数的增多,在某种收敛意义下,频率的极限是概率。大数定律解释了这一结论。

首先介绍切比雪夫不等式。

一、切比雪夫(Chebyshev)不等式

随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{|X-E(X)|\geq \epsilon \}的概率。

切比雪夫不等式


对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。

当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。

二、依概率收敛

随机变量序列即由随机变量构成的一个序列。不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。
只能说某个事件A发生的频率f_n(A)收敛到A的概率P(A)

依概率收敛的定义:

定理2

三、大数定律

三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。注意这三个大数定律的条件有何异同。

定理3 切比雪夫大数定律
随机变量序列相互不相关方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。


定理4 相互独立同分布的大数定律(辛钦大数定律)
辛钦大数定律为算术平均值法则提供了理论依据。

伯努利大数定律
伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。
伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。

伯努利大数定律的直观意义:
试验次数足够多,可用频率作为概率的估计。


三个大数定律的条件是不同的,它们的条件关系如图所示。


大数定律在实际中有许多重要应用,除了算术平均值法则、用频率估计概率,还有数理统计中参数的点估计思想等。

第二节 中心极限定理

自然界中有许多随机现象可以用正态分布或近似正态分布来描述,这是为何?中心极限定理揭示了其中的奥秘。

中心极限定理是相互独立的随机变量之和用正态分布近似的一类定理。首先介绍最为著名的相互独立同分布情形下的中心极限定理,又称为列维-林德伯格中心定理

**定理1 列维-林德伯格中心极限定理(相互独立同分布)


定理的条件要求随机变量相互独立并且服从同一分布。


还有更为一般的结论:只要随机变量相互独立,每个随机变量对和的影响都是微笑的,哪怕它们的分布类型不同,其和标准化后都有标准正态的极限分不。

中心极限定理的直观意义:


中心极限定理在实际应用中有如下三种形式:


定理2 (棣莫弗-拉普拉斯中心极限定理):二项分布的正态近似。

中心极限定理的结论更为细致:


中心极限定理是随机变量和的分布收敛到正态分布的一类定理。不同的中心极限定理的差异就在于对随机变量序列做出了不同的假设。

拓展阅读

大数定律是保险业保险费计算的科学理论基础。当承保标的数量足够大时,由切比雪夫大数定律知,被保险人缴纳的纯保费与其能获得赔款的期望值是相等的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 225,565评论 6 525
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 96,696评论 3 406
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 172,935评论 0 370
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 61,327评论 1 303
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,338评论 6 401
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,760评论 1 316
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 42,085评论 3 431
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 41,091评论 0 280
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,656评论 1 327
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,657评论 3 348
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,767评论 1 355
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,360评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 43,088评论 3 341
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,493评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,654评论 1 278
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,374评论 3 383
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,841评论 2 367

推荐阅读更多精彩内容