谈谈双亲委派模型的第四次破坏-模块化

前言

JDK9引入了Java模块化系统(Java Platform Module System)来实现可配置的封装隔离机制,同时JVM对类加载的架构也做出了调整,也就是双亲委派模型的第四次破坏。前三次破坏分别是:双亲委派模型推出之前,SPI机制,以及OSGI为代表的热替换机制,这里不细说。

双亲委派模型

简介

在JDK9引入之前,绝大多数Java程序会用下面三个类加载器进行加载

  • 启动类加载器(Bootstrap Class Loader):由C++编写,负责加载<JAVA_HOME>\jre\lib目录下的类,例如最基本的Object,Integer,这些存在于rt.jar文件中的类,一般这些类都是Java程序的基石。
  • 扩展类加载器(Extension Class Loader):负责加载<JAVA_HOME>\jre\lib\ext目录下的类,在JDK9之前我们可以将通用性的类库放在ext目录来扩展JAVA的功能,但实际的工程都是通过maven引入jar包依赖。并且在JDK9取消了这一类加载器,取而代之的是平台类加载器(Platform Class Loader),下面会对其介绍。
  • 应用类加载器(Application Class Loader):负责加载ClassPath路径下的类,通常工程师编写的大部分类都是由这个类加载器加载。

工作顺序

解释

如果一个ClassLoader收到了类加载的请求,他会先首先将请求委派给父类加载器完成,只有父类加载器加载不了,子加载器才会完成加载。

<img src="https://tva1.sinaimg.cn/large/00831rSTly1gdatbhj3zsj30hs0b1mxc.jpg" alt="双亲委派模型" style="zoom:70%;" />

源代码

下面代码保留了核心逻辑,并添加了注释,主要是2个步骤

  1. 如果父类加载器不为空则用父类加载器加载
  2. 父类加载器加载不成功则本身再加载
            Class<?> c = findLoadedClass(name);
            //如果该类没加载过
            if (c == null) {
                try {
                //如果有父类加载器
                    if (parent != null) {
                    //使用父类加载器加载
                        c = parent.loadClass(name, false);
                        ...
                    } 
                } 
                   if (c == null) {
                    ...
                    //父类加载器没有加载成功则调用自身的findClass进行加载
                    c = findClass(name);
                                        ...
                }
            }
       

值得注意的是这里的parent并不是继承上的父子关系,而是组合关系的父子,parent只是类加载器的一个参数。

图示

如果觉得上面的解释比较抽象可以看看下面比较形象的图示,这里的敌人就是我们要加载的jar包

<img src="https://tva1.sinaimg.cn/large/00831rSTly1gdat1wvelvj30uc0e4n5c.jpg" alt="工作顺序" style="zoom:57%;" />

缺点

通过上面的漫画不言而喻,当真正的敌人来了,靠这种低效的传达机制,怎么可能打一场胜仗呢?

  • 启动类加载器负责加载<JAVA_HOME>\jre\lib目录
  • 扩展类加载器负责加载<JAVA_HOME>\jre\lib\ext目录
  • 应用类加载器负责加载ClassPath目录。

既然一切都是各司其职,为什么不能加载类的时候一步到位呢?

通过分析JDK9的类加载器源码,我发现最新的类加载器结构在一定程度上是缓解了这种情况的

JDK的模块化

在JDK9之前,JVM的基础类以前都是在rt.jar这个包里,这个包也是JRE运行的基石。这不仅是违反了单一职责原则,同样程序在编译的时候会将很多无用的类也一并打包,造成臃肿。

在JDK9中,整个JDK都基于模块化进行构建,以前的rt.jar, tool.jar被拆分成数十个模块,编译的时候只编译实际用到的模块,同时各个类加载器各司其职,只加载自己负责的模块。

<img src="https://tva1.sinaimg.cn/large/00831rSTly1gdaucc9rlyj30ro0vcgrv.jpg" alt="moudle" style="zoom:40%;" />

模块化加载源码

  Class<?> c = findLoadedClass(cn);
      if (c == null) {
         // 找到当前类属于哪个模块
         LoadedModule loadedModule = findLoadedModule(cn);
         if (loadedModule != null) {
            //获取当前模块的类加载器
            BuiltinClassLoader loader = loadedModule.loader();
            //进行类加载
            c = findClassInModuleOrNull(loadedModule, cn);
         } else {
            // 找不到模块信息才会进行双亲委派
         if (parent != null) {
           c = parent.loadClassOrNull(cn);
         }
       }

上面代码就是破坏双亲委派模型的“铁证”,而当我们继续跟进findLoadedModule,会发现是根据路径名找到对应的模块,而维护这一数据结构的就是下面这个Map。

Map<String, LoadedModule> packageToModule
        = new ConcurrentHashMap<>(1024);

可以看到LoadedModule里面不仅有该模块的loader信息,还有用于描述依赖模块,对外暴露模块的信息的mref,LoadedModule也是模块化实现封装隔离机制的一块重要实现。

<img src="https://tva1.sinaimg.cn/large/00831rSTly1gdauzxorg6j31240pwqa7.jpg" alt="moduleMap" style="zoom:47%;" />

每一个module信息都有一个BuiltinClassloader,这个类有三个子类,我们通过源码分析他们的父子关系

<img src="https://tva1.sinaimg.cn/large/00831rSTly1gdavhdpd40j30x408s40s.jpg" alt="image-20200329162147803" style="zoom:47%;" />

在ClassLoaders类中可以发现,PlatformClassLoader的parent是BootClassLoader,而AppClassLoader的parent则是PlatformClassLoader。

public class ClassLoaders {

    // the built-in class loaders
    private static final BootClassLoader BOOT_LOADER;
    private static final PlatformClassLoader PLATFORM_LOADER;
    private static final AppClassLoader APP_LOADER;

    static {
        BOOT_LOADER =
            new BootClassLoader((append != null && !append.isEmpty())
                ? new URLClassPath(append, true)
                : null);
                
        PLATFORM_LOADER = new PlatformClassLoader(BOOT_LOADER);
        ...
        APP_LOADER = new AppClassLoader(PLATFORM_LOADER, ucp);
    }
  }

结论

  1. 经过破坏后的双亲委派模型更加高效,减少了很多类加载器之间不必要的委派操作
  2. JDK9的模块化可以减少Java程序打包的体积,同时拥有更好的隔离线与封装性
  3. 每个module拥有专属的类加载器,程序在并发性上也会更加出色
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,525评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,203评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,862评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,728评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,743评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,590评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,330评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,244评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,693评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,885评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,001评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,723评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,343评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,919评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,042评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,191评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,955评论 2 355

推荐阅读更多精彩内容