flink 源码分析1之RichSinkFunction

flink sink 2 mysql demo

我们先看一个自定义sink 的demo,将 nc 的数据写入到mysql 中。


import myflink.learn.model.Student;
import myflink.learn.sink.SinkToMySQL;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.concurrent.atomic.AtomicInteger;

/**
 * @Author wtx
 * @Date 2019/1/23
 */
public class Flink2MysqlDemo {
    public static void main(String[] args) throws Exception {
        AtomicInteger atomicInteger = new AtomicInteger(0);
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        env.setParallelism(1);
        // 设置数据源
        DataStream<String> text = env.socketTextStream("localhost", 9000, "\n");

//        DataStream<Student> studentDataStream = text.map(new MapFunction<String, Student>() {
//            @Override
//            public Student map(String s) throws Exception {
//                Student student = new Student();
//                student.setName(s);
//                student.setId(atomicInteger.addAndGet(1));
//                return student;
//            }
//        });

        DataStream<Student> studentDataStream = text.map((str) -> {
            Student student = new Student();
            student.setName(str);
            student.setId(atomicInteger.addAndGet(1));
            return student;
        });

        studentDataStream.addSink(new SinkToMySQL());
        env.execute();
    }
}
@Slf4j
public class SinkToMySQL extends RichSinkFunction<Student> {
    PreparedStatement ps;
    private Connection connection;

    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        connection = getConnection();
        String sql = "insert into student(id, name) values(?, ?);";
        ps = this.connection.prepareStatement(sql);
    }

    @Override
    public void close() throws Exception {
        super.close();
        //关闭连接和释放资源
        if (connection != null) {
            connection.close();
        }
        if (ps != null) {
            ps.close();
        }
    }

    @Override
    public void invoke(Student value, Context context) throws Exception {
        //组装数据,执行插入操作
        ps.setInt(1, value.getId());
        ps.setString(2, value.getName());
        ps.executeUpdate();
    }

    private static Connection getConnection() {
        Connection con = null;
        try {
            Class.forName("com.mysql.jdbc.Driver");
            con = DriverManager.getConnection("jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=UTF-8", "root", "");
        } catch (Exception e) {
            log.error("exception e:", e);
        }
        return con;
    }
}

RichSinkFunction 的类结构

可以看到自定义的sink 继承自RichSinkFunction. 来看 RichSinkFunction 的类结构

image


/**
 * The base interface for all user-defined functions.
 *
 * <p>This interface is empty in order to allow extending interfaces to
 * be SAM (single abstract method) interfaces that can be implemented via Java 8 lambdas.</p>
 */
@Public
public interface Function extends java.io.Serializable {
}
public interface SinkFunction<IN> extends Function, Serializable{
  default void invoke(IN value, Context context) throws Exception {
        invoke(value);
    }
  @Public
    interface Context<T> {
        long currentProcessingTime();
        long currentWatermark();
        Long timestamp();
    }
}

在上面的 SinkFunction 接口中实际只有一个方法,invoke(),将类型为IN 的value 写入到sink 中。Context: 写入value 时的上下文

@Public
public abstract class AbstractRichFunction implements RichFunction, Serializable {
  private transient RuntimeContext runtimeContext;
  @Override
    public void open(Configuration parameters) throws Exception {}

    @Override
    public void close() throws Exception {}
}

而在AbstractRichFunction 只有默认的生命周期方法 open() 和 close() 的空实现。 留给我们自己的比如上面的 SinkToMySQL那样 实现 对于mysql 的 open() close() 另外可以类似的实现对于redis 的sink 类。查看flink-connector-redis 发现已经有了RedisSink 类。
我们先来看看简单的使用:只需要将 new SinkToMySQL() -> new RedisSink

studentDataStream.addSink(new SinkToMySQL());

               ==>

FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("127.0.0.1").build();
studentDataStream.addSink(new RedisSink<Tuple2<String, Integer>>(conf, new RedisExampleMapper()));


public static final class RedisExampleMapper implements RedisMapper<Tuple2<String, Integer>> {
       public RedisCommandDescription getCommandDescription() {
           return new RedisCommandDescription(RedisCommand.HSET, "flink");
       }

       public String getKeyFromData(Tuple2<String, Integer> data) {
           return data.f0;
       }

       public String getValueFromData(Tuple2<String, Integer> data) {
           return data.f1.toString();
       }
   }

回到 RedisSink,也是通过继承自RichSinkFunction:

public class RedisSink<IN> extends RichSinkFunction<IN> {
  public RedisSink(FlinkJedisConfigBase flinkJedisConfigBase, RedisMapper<IN> redisSinkMapper) {
  Preconditions.checkNotNull(flinkJedisConfigBase, "Redis connection pool config should not be null");
  Preconditions.checkNotNull(redisSinkMapper, "Redis Mapper can not be null");
  Preconditions.checkNotNull(redisSinkMapper.getCommandDescription(), "Redis Mapper data type description can not be null");

  this.flinkJedisConfigBase = flinkJedisConfigBase;

  this.redisSinkMapper = redisSinkMapper;
  RedisCommandDescription redisCommandDescription = redisSinkMapper.getCommandDescription();
  this.redisCommand = redisCommandDescription.getCommand();
  this.additionalKey = redisCommandDescription.getAdditionalKey();
}
}

通过传入: conf 和 redisSinkMapper 构造出来RedisSink,然后 override invoke().

@Override
    public void invoke(IN input) throws Exception {
        String key = redisSinkMapper.getKeyFromData(input);
        String value = redisSinkMapper.getValueFromData(input);

        switch (redisCommand) {
            case RPUSH:
                this.redisCommandsContainer.rpush(key, value);
                break;
            case LPUSH:
                this.redisCommandsContainer.lpush(key, value);
                break;
            case SADD:
                this.redisCommandsContainer.sadd(key, value);
                break;
            case SET:
                this.redisCommandsContainer.set(key, value);
                break;
            case PFADD:
                this.redisCommandsContainer.pfadd(key, value);
                break;
            case PUBLISH:
                this.redisCommandsContainer.publish(key, value);
                break;
            case ZADD:
                this.redisCommandsContainer.zadd(this.additionalKey, value, key);
                break;
            case HSET:
                this.redisCommandsContainer.hset(this.additionalKey, key, value);
                break;
            default:
                throw new IllegalArgumentException("Cannot process such data type: " + redisCommand);
        }
    }

通过上面的 switch 我们知道,flink -> redis 目前只支持8个最基础的redisCommand,要想调用其他的redisCommand,目前看还是需要自己实现。
另外在 RedisSink 中 还Override 了open 和 close 方法实现了对于redis 的连接和关闭。

RedisSink open() 方法

我们来看看open()

@Override
public void open(Configuration parameters) throws Exception {
        this.redisCommandsContainer = RedisCommandsContainerBuilder.build(this.flinkJedisConfigBase);
    }

这里使用 RedisCommandsContainerBuilder 构造了一个 redisCommandsContainer,RedisCommandsContainer 是一个 接口(The container for all available Redis commands.)
刚好对应上面的 switch (redisCommand)

void hset(String key, String hashField, String value);
void rpush(String listName, String value);
void lpush(String listName, String value);
void sadd(String setName, String value);
void publish(String channelName, String message);
void set(String key, String value);
void pfadd(String key, String element);
void zadd(String key, String score, String element);
void close() throws IOException;

在来看 RedisCommandsContainerBuilder。它通过flinkJedisConfigBase 构造出来redisCommandsContainer。其中 FlinkJedisConfigBase 定义了4个redis 连接时常用的属性connectionTimeout,maxTotal,maxIdle,minIdle

public abstract class FlinkJedisConfigBase implements Serializable {
    private static final long serialVersionUID = 1L;

    protected final int maxTotal;
    protected final int maxIdle;
    protected final int minIdle;
    protected final int connectionTimeout;

    protected FlinkJedisConfigBase(int connectionTimeout, int maxTotal, int maxIdle, int minIdle){
        Preconditions.checkArgument(connectionTimeout >= 0, "connection timeout can not be negative");
        Preconditions.checkArgument(maxTotal >= 0, "maxTotal value can not be negative");
        Preconditions.checkArgument(maxIdle >= 0, "maxIdle value can not be negative");
        Preconditions.checkArgument(minIdle >= 0, "minIdle value can not be negative");
        this.connectionTimeout = connectionTimeout;
        this.maxTotal = maxTotal;
        this.maxIdle = maxIdle;
        this.minIdle = minIdle;
    }

回到RedisCommandsContainerBuilder,可以看到FlinkJedisPoolConfig 的实现类有3种,对应

FlinkJedisPoolConfig jedis 连接池的方式
FlinkJedisClusterConfig redis cluster 方式
FlinkJedisSentinelConfig redis sentinel 方式

public static RedisCommandsContainer build(FlinkJedisConfigBase flinkJedisConfigBase){
        if(flinkJedisConfigBase instanceof FlinkJedisPoolConfig){
            FlinkJedisPoolConfig flinkJedisPoolConfig = (FlinkJedisPoolConfig) flinkJedisConfigBase;
            return RedisCommandsContainerBuilder.build(flinkJedisPoolConfig);
        } else if (flinkJedisConfigBase instanceof FlinkJedisClusterConfig) {
            FlinkJedisClusterConfig flinkJedisClusterConfig = (FlinkJedisClusterConfig) flinkJedisConfigBase;
            return RedisCommandsContainerBuilder.build(flinkJedisClusterConfig);
        } else if (flinkJedisConfigBase instanceof FlinkJedisSentinelConfig) {
            FlinkJedisSentinelConfig flinkJedisSentinelConfig = (FlinkJedisSentinelConfig) flinkJedisConfigBase;
            return RedisCommandsContainerBuilder.build(flinkJedisSentinelConfig);
        } else {
            throw new IllegalArgumentException("Jedis configuration not found");
        }
    }

我们看 jedis pool 的方式,最终生成一个 由jedisPool 构造的 RedisContainer

public static RedisCommandsContainer build(FlinkJedisPoolConfig jedisPoolConfig) {
        Preconditions.checkNotNull(jedisPoolConfig, "Redis pool config should not be Null");

        GenericObjectPoolConfig genericObjectPoolConfig = new GenericObjectPoolConfig();
        genericObjectPoolConfig.setMaxIdle(jedisPoolConfig.getMaxIdle());
        genericObjectPoolConfig.setMaxTotal(jedisPoolConfig.getMaxTotal());
        genericObjectPoolConfig.setMinIdle(jedisPoolConfig.getMinIdle());

        JedisPool jedisPool = new JedisPool(genericObjectPoolConfig, jedisPoolConfig.getHost(),
            jedisPoolConfig.getPort(), jedisPoolConfig.getConnectionTimeout(), jedisPoolConfig.getPassword(),
            jedisPoolConfig.getDatabase());
        return new RedisContainer(jedisPool);
    }

这里的RedisContainer 实现了 上面 RedisCommandsContainer 接口,并且通过jedis pool 的方式真正实现了接口中的hset 等8个方法。

同样的 redis cluster 方式 最终生成的一个 RedisClusterContainer

public static RedisCommandsContainer build(FlinkJedisClusterConfig jedisClusterConfig) {
        Preconditions.checkNotNull(jedisClusterConfig, "Redis cluster config should not be Null");

        GenericObjectPoolConfig genericObjectPoolConfig = new GenericObjectPoolConfig();
        genericObjectPoolConfig.setMaxIdle(jedisClusterConfig.getMaxIdle());
        genericObjectPoolConfig.setMaxTotal(jedisClusterConfig.getMaxTotal());
        genericObjectPoolConfig.setMinIdle(jedisClusterConfig.getMinIdle());

        JedisCluster jedisCluster = new JedisCluster(jedisClusterConfig.getNodes(), jedisClusterConfig.getConnectionTimeout(),
            jedisClusterConfig.getMaxRedirections(), genericObjectPoolConfig);
        return new RedisClusterContainer(jedisCluster);
    }

同样: RedisClusterContainer 实现了 上面 RedisCommandsContainer 接口,并且通过jedis cluster 的方式真正实现了接口中的hset 等8个方法。

sink 2 kafka

flink 同样实现了 到 kafka 的写入,先将 SinkToMySQL 换成 FlinkKafkaProducer

Properties properties = new Properties();
properties.put("bootstrap.servers", "127.0.0.1:9092");
text.addSink(new FlinkKafkaProducer<>("flink_2_kafka_demo", new SimpleStringSchema(),
                properties));

除了 kafka 所需的 properties 外,还有个 SimpleStringSchema,按照上面的 Sink2Mysql 和 RedisSink,我们可以很容易的想到 FlinkKafkaProducer 实现了 RichSinkFunction,来看 源码:

public class FlinkKafkaProducer<IN>
    extends TwoPhaseCommitSinkFunction<IN, FlinkKafkaProducer.KafkaTransactionState, FlinkKafkaProducer.KafkaTransactionContext> {

  }
image

sink 2 kafka 比较复杂,其中 TwoPhaseCommitSinkFunction 除了实现写入kafka 消息外,还有 两阶段提交协议的实现。 <基本上还是依赖kafka的事务处理实现的,下篇文章在详细分析>

先来看构造函数

public FlinkKafkaProducer(
  String defaultTopicId,
  KeyedSerializationSchema<IN> serializationSchema,
  Properties producerConfig,
  Optional<FlinkKafkaPartitioner<IN>> customPartitioner,
  FlinkKafkaProducer.Semantic semantic,
  int kafkaProducersPoolSize) {
  super(new FlinkKafkaProducer.TransactionStateSerializer(), new FlinkKafkaProducer.ContextStateSerializer());

  this.defaultTopicId = checkNotNull(defaultTopicId, "defaultTopicId is null");
  this.schema = checkNotNull(serializationSchema, "serializationSchema is null");
  this.producerConfig = checkNotNull(producerConfig, "producerConfig is null");
  this.flinkKafkaPartitioner = checkNotNull(customPartitioner, "customPartitioner is null").orElse(null);
  this.semantic = checkNotNull(semantic, "semantic is null");
  this.kafkaProducersPoolSize = kafkaProducersPoolSize;
  checkState(kafkaProducersPoolSize > 0, "kafkaProducersPoolSize must be non empty");

  ClosureCleaner.clean(this.flinkKafkaPartitioner, true);
  ClosureCleaner.ensureSerializable(serializationSchema);

  // set the producer configuration properties for kafka record key value serializers.
  if (!producerConfig.containsKey(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG)) {
    this.producerConfig.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getName());
  } else {
    LOG.warn("Overwriting the '{}' is not recommended", ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG);
  }

  if (!producerConfig.containsKey(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG)) {
    this.producerConfig.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getName());
  } else {
    LOG.warn("Overwriting the '{}' is not recommended", ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG);
  }

  // eagerly ensure that bootstrap servers are set.
  if (!this.producerConfig.containsKey(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG)) {
    throw new IllegalArgumentException(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG + " must be supplied in the producer config properties.");
  }

  if (!producerConfig.containsKey(ProducerConfig.TRANSACTION_TIMEOUT_CONFIG)) {
    long timeout = DEFAULT_KAFKA_TRANSACTION_TIMEOUT.toMilliseconds();
    checkState(timeout < Integer.MAX_VALUE && timeout > 0, "timeout does not fit into 32 bit integer");
    this.producerConfig.put(ProducerConfig.TRANSACTION_TIMEOUT_CONFIG, (int) timeout);
    LOG.warn("Property [{}] not specified. Setting it to {}", ProducerConfig.TRANSACTION_TIMEOUT_CONFIG, DEFAULT_KAFKA_TRANSACTION_TIMEOUT);
  }

  // Enable transactionTimeoutWarnings to avoid silent data loss
  // See KAFKA-6119 (affects versions 0.11.0.0 and 0.11.0.1):
  // The KafkaProducer may not throw an exception if the transaction failed to commit
  if (semantic == FlinkKafkaProducer.Semantic.EXACTLY_ONCE) {
    final Object object = this.producerConfig.get(ProducerConfig.TRANSACTION_TIMEOUT_CONFIG);
    final long transactionTimeout;
    if (object instanceof String && StringUtils.isNumeric((String) object)) {
      transactionTimeout = Long.parseLong((String) object);
    } else if (object instanceof Number) {
      transactionTimeout = ((Number) object).longValue();
    } else {
      throw new IllegalArgumentException(ProducerConfig.TRANSACTION_TIMEOUT_CONFIG
        + " must be numeric, was " + object);
    }
    super.setTransactionTimeout(transactionTimeout);
    super.enableTransactionTimeoutWarnings(0.8);
  }

  this.topicPartitionsMap = new HashMap<>();
}

构造函数看起来很长,基本都是在给属性赋值。其中:

defaultTopicId: kafka的 tpoicId
serializationSchema
producerConfig
customPartitioner
semantic:
kafkaProducersPoolSize: default KafkaProducers pool size

这里面有个 enum Semantic:

public enum Semantic {
 EXACTLY_ONCE,
 AT_LEAST_ONCE,
 NONE
}

. Semantic.EXACTLY_ONCE 有且仅有一次
the Flink producer will write all messages in a Kafka transaction that will be committed to Kafka on a checkpoint.
. Semantic.AT_LEAST_ONCE 最少一次
the Flink producer will wait for all outstanding messages in the Kafka buffers to be acknowledged by the Kafka producer on a checkpoint

代码量很大,我们先看两个简单的close和open,与mysql 和 redis 的close,open相比,代码行数也是比较大的。
close 方法中对于EXACTLY_ONCE 的Semantic,首先拿到 currentTransaction,如果不为空,flush(),对于AT_LEAST_ONCE 和 NONE 类型的,需要手动调用 currentTransaction.producer.close();
然后 将pendingTransactions 的transaction closeQuietly。

@Override
    public void close() throws FlinkKafkaException {
        final FlinkKafkaProducer.KafkaTransactionState currentTransaction = currentTransaction();
        if (currentTransaction != null) {
            // to avoid exceptions on aborting transactions with some pending records
            flush(currentTransaction);

            // normal abort for AT_LEAST_ONCE and NONE do not clean up resources because of producer reusing, thus
            // we need to close it manually
            switch (semantic) {
                case EXACTLY_ONCE:
                    break;
                case AT_LEAST_ONCE:
                case NONE:
                    currentTransaction.producer.close();
                    break;
            }
        }
        try {
            super.close();
        }
        catch (Exception e) {
            asyncException = ExceptionUtils.firstOrSuppressed(e, asyncException);
        }
        // make sure we propagate pending errors
        checkErroneous();
        pendingTransactions().forEach(transaction ->
            IOUtils.closeQuietly(transaction.getValue().producer)
        );
    }

open 方法比较简单,根据是否logFailuresOnly,构造不同的 Callback,用于在 发送给kafka消息成功后,调用不用的 Callback

@Override
    public void open(Configuration configuration) throws Exception {
        if (logFailuresOnly) {
            callback = new Callback() {
                @Override
                public void onCompletion(RecordMetadata metadata, Exception e) {
                    if (e != null) {
                        LOG.error("Error while sending record to Kafka: " + e.getMessage(), e);
                    }
                    acknowledgeMessage();
                }
            };
        }
        else {
            callback = new Callback() {
                @Override
                public void onCompletion(RecordMetadata metadata, Exception exception) {
                    if (exception != null && asyncException == null) {
                        asyncException = exception;
                    }
                    acknowledgeMessage();
                }
            };
        }

        super.open(configuration);
    }

在来看看invoke方法,最终调用transaction里面的producer 去发送消息给kafka。 transaction.producer.send(record, callback);

@Override
    public void invoke(FlinkKafkaProducer.KafkaTransactionState transaction, IN next, Context context) throws FlinkKafkaException {
        checkErroneous();

        byte[] serializedKey = schema.serializeKey(next);
        byte[] serializedValue = schema.serializeValue(next);
        String targetTopic = schema.getTargetTopic(next);
        if (targetTopic == null) {
            targetTopic = defaultTopicId;
        }

        Long timestamp = null;
        if (this.writeTimestampToKafka) {
            timestamp = context.timestamp();
        }

        ProducerRecord<byte[], byte[]> record;
        int[] partitions = topicPartitionsMap.get(targetTopic);
        if (null == partitions) {
            partitions = getPartitionsByTopic(targetTopic, transaction.producer);
            topicPartitionsMap.put(targetTopic, partitions);
        }
        if (flinkKafkaPartitioner != null) {
            record = new ProducerRecord<>(
                targetTopic,
                flinkKafkaPartitioner.partition(next, serializedKey, serializedValue, targetTopic, partitions),
                timestamp,
                serializedKey,
                serializedValue);
        } else {
            record = new ProducerRecord<>(targetTopic, null, timestamp, serializedKey, serializedValue);
        }
    /**
     * pendingRecords 是一个AtomicLong
     * private final AtomicLong pendingRecords = new AtomicLong();
     */
        pendingRecords.incrementAndGet();
        transaction.producer.send(record, callback);
    }

里面有个flinkKafkaPartitioner

public abstract class FlinkKafkaPartitioner<T> implements Serializable{
  public void open(int parallelInstanceId, int parallelInstances) {
        // overwrite this method if needed.
    }

  // Determine the id of the partition that the record should be written to
  // 决定了record 应该写入到哪个分区。返回该分区的id
  public abstract int partition(T record, byte[] key, byte[] value, String targetTopic, int[] partitions);

}

目前 flink 中只剩下一个具体的实现,partitions[parallelInstanceId % partitions.length];

public class FlinkFixedPartitioner<T> extends FlinkKafkaPartitioner<T> {
  @Override
    public int partition(T record, byte[] key, byte[] value, String targetTopic, int[] partitions) {
        return partitions[parallelInstanceId % partitions.length];
    }
}

总结

flink 通过 继承 RichSinkFunction 实现对不同存储的sink。并且只需要 overide 里面的open,close,invoke 三个方法即可

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容