【R语言】Robust Rank Aggregation(RRA)方法介绍

RRA(Robust Rank Aggregation)是一种对排名进行整合,获得一个综合性排名列表的算法。这个方法最早实在2012年发表在Bioinformatics杂志上。

在数据挖掘过程中,我们经常可能会遇到这种情况。例如我们同时分析了三套表达谱数据,都得到了差异表达分析结果。

GEO芯片数据差异表达分析

R代码TCGA差异表达分析

☞零代码TCGA差异表达分析

那么我们手上会有3个差异表达的gene list。怎么样才能挑出一些更重要的或者更有生物学意义的基因做后续分析或者实验验证呢?我们通常的做法可能是直接取这三个gene list的交集。虽然这样做确实可行,但是这种方法只考虑到了gene出现的次数,而没有考虑到基因在三个list里面的排序。如下图所示

红色标记的基因在三个gene list都出现了,这代表他很重要,这一点我们毫无疑问,但是也有很多其他的基因可能也出现了三次,我们怎么对这些基因的重要性进行排序呢?对于这种情况,我们就可以使用RRA方法。

RRA方法其实就是对多个排好序的基因集,进行求交集的同时还考虑一下它们的排序情况。总体上来说,就是挑选那些在多个数据集都表现差异的基因,并且每次差异都排名靠前的那些,他们的最终的综合排名也会比较靠前。

下面我们来看一个具体的例子,这里用到了R里面的RobustRankAggreg包,来实现RRA方法。

#安装RobustRankAggreg包
BiocManager::install("RobustRankAggreg")

#加载RobustRankAggreg包
library(RobustRankAggreg)

#下面的基因集合是随机产生的,为了保证大家能重现结果
#设置随机过程的seed
set.seed(123)
#产生三个gene set,模拟我们差异表达基因集合(这里用字母代替基因名)
glist <- list(gene_set1=sample(letters, 18), 
              gene_set2=sample(letters, 10), 
              gene_set3=sample(letters, 12))
#统计所有基因出现的次数
freq=as.data.frame(table(unlist(glist)))

#应用RRA算法,对基因进行整合排序
ag=aggregateRanks(glist)
#添加基因出现的次数
ag$Freq=freq[match(ag$Name,freq$Var1),2]
ag

我们首先随机生成了三个gene set,模拟我们分析三套数据得到的差异表达基因的结果,这里基因出现的顺序也会影响后面的排序。我们假设这里排在前面的基因fold change比较大。这三个基因集合如下,我们用一个字母表示一个基因的名字。

通过aggregateRanks方法对这三个基因集合整合排序之后,我们得到结果如下。我们可以看到j,k,i虽然都在三个基因集中出现了,但是为什么j排第一。我们可以从原始的排序中找到答案,j在原始三个基因集中排名分别为5/18,3/10,4/12。而k在原始基因集中排名分别为7/18,9/10,12/12,可以看出k在后面两个基因集中的排名垫底了。这也是为什么只有j的score是显著的(<0.05),而k和i都不显著。

这里用一个简单的例子给大家演示了RRA的过程,以及结果的解读。后面会结合具体的表达谱数来给大家进一步讲解这个方法,敬请期待!

【R语言】Robust Rank Aggregation(RRA)方法介绍

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容