推荐系统遇上深度学习(一零一)-[阿里]时间感知的深度物品演化网络

今天介绍的论文是阿里在CIKM20上发表的一篇文章,标题为《Deep Time-Aware Item Evolution Network for Click-Through Rate Prediction》,之前介绍的阿里的论文大都是从用户行为序列出发,来建模用户的兴趣表示,而缺少对候选物品的更为丰富的建模,而本文则是从物品的角度出发,将物品行为引入到网络中,一起来看一下。

1、背景

之前介绍的阿里的论文大都是从用户行为序列出发,来建模用户的兴趣表示。但是,用户的偏好会发生变化或者产生新的偏好,例如热点新闻、推特或者照片,会吸引用户的注意力,使其产生新的兴趣。而在电商领域,如双十一,用户可能会有不同于平常购物的新的兴趣出现,一些促销力度较大的商品,可能在短期内成为热销商品。在上述的场景下,使用用户行为序列通常无法预测用户新产生的兴趣,不仅因为用户行为中有过时的兴趣,同时预测用户新的兴趣严重依赖于物品的演化过程。

为了解决上述的问题,论文提出了时间感知的深度物品演化网络(Deep Time-Aware Item Evolution Network,简称TIEN ),我们在下一节中进行介绍。

2、TIEN介绍

TIEN的整体结构如下图所示:

可以看到,主要包括Embedding Layer、Time-Interval Attention Layer、Robust Personalized Attention Layer和Time-Aware Evolution Layer。接下来分别进行介绍。

2.1 模型输入

模型输入主要包含四部分,用户u,候选物品i,用户行为序列Iu和物品行为序列Ui。用户行为序列即用户交互过的物品(物品特征)按照时间先后的排序结果,物品行为序列则是与该物品有过交互的用户(用户特征)按照时间先后的排序结果。

用户和物品特征主要包括多个离散特征,对用户特征来说,包括用户ID、性别、年龄段等等,对物品特征来说,主要包括物品ID、店铺ID和品类ID等等。用户行为序列中每一个物品会转换为对应的特征表示,而物品行为序列中每一个用户也会转换为对应的特征表示。

2.2 Embedding Layer

在Embedding层,用户和物品特征会转换为对应的embedding,分别用euei表示。

同样,用户行为序列中的每一个物品特征也会转换为对应的embedding表示,用Su表示,物品行为序列中每一个用户特征也会转换为对应的embedding表示,用Si表示:

2.3 Time-Interval Attention Layer

物品行为序列是一系列用户的集合,在Time-Interval Attention Layer,我们使用GRU单元来建模物品的演化过程,同时将时间因素考虑进来,利用时间信息对每一个行为进行加权,如更近期交互的用户应该具有更高的权重。假设当前请求的时间为t,物品行为序列中第k个用户与其交互的时间为tk,则其时间间隔为tivk=|t-tk|。进一步,将时间间隔进行划分[0,1),[1,2),[2,4),...[2j,2j+1)不同分段,将tivk转换为对应的离散特征xtiv,进一步转换为对应的embedding表示:

同时,利用GRU单元建模物品行为的演化过程,第k步的hidden state为huk。同时,显式将时间间隔embedding考虑进来,作为权重,计算得到hutk(二者进行element-wise的相加):

2.4 Robust Personalized Attention Layer

在Robust Personalized Attention Layer,主要解决两方面的问题,首先是如何过滤物品交互序列中的噪声。其次是如何从物品行为序列的用户中,找到与当前用户(target-user)更为相似的用户。

第二个问题主要是用注意力机制解决,注意力机制计算如下:

其中K使用hutk,V使用huk。即在计算与当前用户的相关性权重时,我们将时间因素考虑进来,而在计算最后的加权向量表示时,则将时间因素进行剔除。

接下来的问题是Q是什么,Q可以是当前用户的向量表示eu。但为了过滤噪声,论文中使用的Q计算如下:

上式中第二项是物品行为序列中所有用户向量的avg-pooling,使用avg-pooling的方式得到的向量,能够表示所有用户的一些共性的特点,一些明显与共性特点不同的用户,在计算权重时,得到的权重会相对较小,从而一定程度上达到了消除噪声的目的,当然这是一种个性化与噪声消除相互权衡的做法。实际中也不一定能够取得更好的效果。

Q、K、V确定后,使用Multi-head attention得到这一层的输出,计作erpi。计算如下:

2.5 Time-Aware Evolution Layer

在Time-Aware Evolution Layer,主要建模物品的潮流趋势或者说生命周期。如一些商品可能仅在双十一的时候卖的比较火爆,而在平时则很少有人去购买。

这里的做法主要是通过一个GRU单元,将之前得到的时间向量作为输入,得到最终的隐层输出:

通过Robust Personalized Attention Layer,得到了erpi,在Time-Aware Evolution Layer,得到了h'tiv,二者经过一定的融合函数,得到最终的物品行为序列的向量表示,融合方式可以是element-wise相加,相乘或更为复杂的非线性方式等等。

2.6 全连接层&损失计算

上述主要介绍的是对物品行为序列的处理过程,对于用户行为序列,使用GRU和Attention层进行建模,可以参考TIEN的整体结构图,本文不做详细介绍。

在最后的全连接层,将当前用户的向量表示,候选物品的向量表示,用户行为序列的向量表示,物品行为序列的向量表示,拼接后输入到全连接层中,得到最终的预测结果(当然下游任务不一定是CTR,CVR/GMV/Price预估等都可以)。如果下游任务是CTR,则使用logloss来计算损失:

3、实验结果

首先,来看下TIEN与baseline模型的效果对比,其在不同数据集上的效果均好于base模型:

其次,看一下不同的Layer是否都对最终的结果有提升作用:

最后,看下物品行为序列的长度对于AUC的影响:

好了,本文就介绍到这里,感兴趣的同学可以阅读原文哟~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容