5.Constraint Satisfaction and Local Search

DFBB: Intermediate solutions(Depth-First Branch and Bound )

In order to find an optimal solution of CSP, we use DFBB

Implement

♦ Use lower bound estimate L of the cost of solutions extending the current partial assignment
— underestimates the objective function at each node

♦ Also use a bound B
— overestimates the objective function (globally)
— initialise to infinity (or a known overestimate)

♦ Traverse the search tree e.g. depth first

♦ Backtrack if L≥B

♦ Each time a solution is found, set B to its objective value

♦ B is monotone decreasing as solutions are found

♦ So search tree branches tend to get shorter towards the end

Effect

♦ First solution is at the bottom of the leftmost (complete) branch
— Fast: Likely to be found quickly
— Dirty: Likely to be of low quality

♦ Always trying to improve on the best so far — Any improvement will do

♦ So DFBB produces a sequence of (strictly) improving solutions

♦ We can interrupt the search at any time
— when the current solution is good enough
— when a time limit expires
— when the next process needs to start
— when we just get fed up with waiting

♦ Intermediate solutions are valuable, because optimal ones can be very expensive to compute (and proofs of optimality even more expensive).

  1. FD solvers commonly use Depth-First Branch and Bound (DFBB)
    — Use a lower bound L on the objective and an upper bound B
    — Backtrack whenever L ≥ B
    — Revise B whenever a solution is found

  2. DFBB fits well with backtracking CSP solution methods.

Local Search

The general idea: search in the space of total assignments.
局部搜索是解决最优化问题的一种元启发式算法,也是一种任一时间算法:即便它运行中被强行中止,也能返回正确的解。

steps:(example for satisfaction)

  1. Start with a random assignment of values to all variables (Of course, this doesn’t satisfy all constraints)
  2. Repeatedly:
    Choose a variable (random choice is good)
    Revise its value to minimise its constraint violations Stop when all constraints are satisfied or time is up.

Local search___Iterative improvement algorithms

General idea: keep a single “current” state, try to improve it
— perform local moves in the neighbourhood of the current state
— no guarantee of completeness (may fail to find any solution)
— no guarantee of optimality
— no possibility of showing unsatisfiability

Advantage:

  1. Small memory requirements, suitable for online as well as offline search.
  2. method scales up better than complete search in many domains.

Local search__Hill-climbing(爬山算法)

General idea: Moves to the** best** neighbor.

  1. Random-restart hill climbing overcomes local maxima—trivially complete(出现局部最小解后的处理办法)

Local search__Simulated annealing(退火算法)

Idea: escape local maxima by allowing some “bad” moves.
目的:因为一味地取最优值,可能会造成局部最优解。所以我们允许一定概率地取一部分比当前状态较差的值。
这样可能会造成一些坏的影响。

Local search__Large Neighbourhood Search(大规模邻域搜索算法)

Given a current solution:

  1. Destroy part of it by forgetting the values of some variables
  2. See the problem of assigning values to those variables as a CSP
  3. Solve [optimally] using a complete search method such as DFBB

Performance is sensitive to the choice of what to destroy.
The old solution is still in the neighborhood, so there is always a next solution available, given enough search.

What to destroy?
A solution could be partially destroyed by randomly selecting decision vari- ables and forgetting their values—this resembles random decay.

We are more likely to do the partial destruction systematically, to make intuitive sense, say by forgetting the values of all variables that mention two of the machines, or the schedules of a random selection of the employees.

Notice:

  1. Local optima are still a problem, as with all local search — random restart is commonly used to escape.

  2. We may choose to abstract from the current solution
    — use only some decision variables, for a partial description
    — designed so the rest can be recovered by easy search
    — destroy part of the abstract solution
    — gives the complete search freedom to optimize minor aspects

  3. There is always a tradeoff between neighborhood size and speed
    — Large neighborhoods increase the chance of improvement
    — but they may create hard problems for the complete search

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容

  • 早上送儿子上学,结果引发了一场母与子的争吵,一直到争执到老师那儿。事情是这样的: “东东,我开车技术不好,为什么还...
    一笑而过2023阅读 199评论 2 1
  • n1.还是像往常一样的上班,突然觉得时间不够用,时间很紧,还好叔叔给我说了时间计划,让我好好管理时间,他给我拷了很...
    花猫和喵阅读 170评论 0 0
  • tribbie阅读 789评论 1 3