Sliding Whinow(3)
Given a string, find the length of the longest substring without repeating characters.
Examples:
Given "abcabcbb", the answer is "abc", which the length is 3.
Given "bbbbb", the answer is "b", with the length of 1.
Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring.
public int lengthOfLongestSubstring(String s) {
int n = s.length();
Set<Character> set = new HashSet<>();
int ans = 0, i = 0, j = 0;
while (i < n && j < n) {
// try to extend the range [i, j]
if (!set.contains(s.charAt(j))){
set.add(s.charAt(j++));
ans = Math.max(ans, j - i);
}
else {
set.remove(s.charAt(i++));
}
}
return ans;
}
public int lengthOfLongestSubstring(String s) {
int n = s.length(), ans = 0;
Map<Character, Integer> map = new HashMap<>(); // current index of character
// try to extend the range [i, j]
for (int j = 0, i = 0; j < n; j++) {
if (map.containsKey(s.charAt(j))) {
i = Math.max(map.get(s.charAt(j)), i);
}
ans = Math.max(ans, j - i + 1);
map.put(s.charAt(j), j + 1);
}
return ans;
}
Minimum Window Substring
Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).
Example:
Input: S = "ADOBECODEBANC", T = "ABC"
Output: "BANC"
Note:
If there is no such window in S that covers all characters in T, return the empty string "".
If there is such window, you are guaranteed that there will always be only one unique minimum window in S.
public class Solution {
public String minWindow(String s, String t) {
if(s == null || s.length() < t.length() || s.length() == 0){
return "";
}
HashMap<Character,Integer> map = new HashMap<Character,Integer>();
for(char c : t.toCharArray()){
if(map.containsKey(c)){
map.put(c,map.get(c)+1);
}else{
map.put(c,1);
}
}
int left = 0;
int minLeft = 0;
int minLen = s.length()+1;
int count = 0;
for(int right = 0; right < s.length(); right++){
if(map.containsKey(s.charAt(right))){
map.put(s.charAt(right),map.get(s.charAt(right))-1);
if(map.get(s.charAt(right)) >= 0){
count ++;
}
while(count == t.length()){
if(right-left+1 < minLen){
minLeft = left;
minLen = right-left+1;
}
if(map.containsKey(s.charAt(left))){
map.put(s.charAt(left),map.get(s.charAt(left))+1);
if(map.get(s.charAt(left)) > 0){
count --;
}
}
left ++ ;
}
}
}
if(minLen>s.length())
{
return "";
}
return s.substring(minLeft,minLeft+minLen);
}
思路:维护一个窗口,每当找到合适的字符串时,收缩窗口直到不能收缩,记录窗口大小。