陀螺的规则进动及其近似理论

陀螺示意图:

陀螺.png

陀螺 具有质量对称轴,并绕此对称轴(也称自转轴)做高速旋转的定点运动的刚体。

设陀螺绕自转轴Oz'以角速度\pmb \omega_{\varphi} = \dot{\varphi} \pmb k'(也称自旋角速度)旋转;自转轴同时以恒定的角速度\pmb \omega_{\psi} = \dot{\psi} \pmb k(也称进动角速度)绕空间的某一固定轴Oz转动,Oz轴和Oz'轴的夹角(称为章动角)为\theta

Oz轴和Oz'轴所确定的平面的单位法向量(节线方向)为\pmb n = \pmb k \times\pmb k'/sin\theta,另一个单位向量为\pmb b = \pmb k' \times \pmb n

设陀螺在运动过程中,\theta​\dot{\psi}​为常量,作用在陀螺上的外力矩的矢量和在自转轴Oz'​上的投影为零(外力作用线与自转轴相交或平行)。根据刚体定点运动的欧拉动力学方程:
J_{x'} {{d\omega_{x'}}\over{dt}} + (J_{z'}-J_{y'})\omega_{y'}\omega_{z'}=M_{x'}\\ J_{y'} {{d\omega_{y'}}\over{dt}} + (J_{x'}-J_{z'})\omega_{z'}\omega_{x'}=M_{y'}\\ J_{z'} {{d\omega_{z'}}\over{dt}} + (J_{y'}-J_{x'})\omega_{x'}\omega_{y'}=M_{z'}
陀螺的动力学方程为
\begin{aligned} J_{x'} \dot{\omega}_{x'} + (J_{z'}-J_{y'})\omega_{y'}\omega_{z'} & =M_{x'}\\ J_{y'} \dot{\omega}_{y'} + (J_{x'}-J_{z'})\omega_{z'}\omega_{x'} & =M_{y'}\\ J_{z'} \dot{\omega}_{z'} + (J_{y'}-J_{x'})\omega_{x'}\omega_{y'} & =0 \end{aligned} \tag1

考虑到陀螺运动特点:\theta\dot{\psi}为常量,根据欧拉运动学方程:
\begin{aligned} \omega_{x'} & = \dot{\psi}sin\theta sin\varphi+\dot{\theta}cos\varphi\\ \omega_{y'} & = \dot{\psi}sin\theta cos\varphi-\dot{\theta}sin\varphi\\ \omega_{z'} & = \dot{\psi}cos\theta + \dot{\varphi} \end{aligned}
可得:
\begin{split} \omega_{x'} &= \dot{\psi}sin\theta sin\varphi\\ \omega_{y'} &= \dot{\psi}sin\theta cos\varphi\\ \omega_{z'} &= \dot{\psi}cos\theta + \dot{\varphi} \end{split} \tag2
上式对时间求导可得:
\begin{aligned} \dot{\omega}_{x'} &= \dot{\psi} \dot{\varphi}sin\theta cos\varphi\\ \dot{\omega}_{y'} &= -\dot{\psi}\dot{\varphi}sin\theta sin\varphi\\ \omega_{z'} &= \ddot{\varphi} \end{aligned}\tag3
将式(2)和式(3)代入式(1),整理得:
\begin{aligned} J_{x'}\dot{\varphi}cos\varphi+(J_{z'}-J_{y'})cos\varphi(\dot{\psi}cos\theta+\dot{\varphi}) = {M_{x'}\over{\dot{\psi}sin\theta}}\\ -J_{y'}\dot{\varphi}sin\varphi+(J_{x'}-J_{z'})sin\varphi(\dot{\psi}cos\theta+\dot{\varphi}) = {M_{y'}\over{\dot{\psi}sin\theta}}\\ J_{z'}\ddot{\varphi}+{(J_{y'}-J_{x'})\over2}(\dot{\psi}sin\theta)^2sin2\varphi=0 \end{aligned} \tag4
将式(4)中的第一个方程两边乘以cos\varphi,第二个方程两边乘以sin\varphi,然后两式相减得到:
(J_{x'}cos^2\varphi+J_{y'}sin^2\varphi)\dot{\varphi}+[J_{z'}-(J_{y'}cos^2\varphi+J_{x'}sin^2\varphi)](\dot{\psi}cos\theta+\dot{\varphi}) = {M_n\over\dot{\psi}sin\theta} \tag5
其中,M_n=M_{x'}cos\varphi-M_{y'}sin\varphi为外力矩矢量和在节线上的投影。

将式(4)中的第一个方程两边乘以sin\varphi,第二个方程两边乘以cos\varphi,然后两式相加得到:
(J_{x'}-J_{y'})sin2\varphi(\dot{\psi}cos\theta+2\dot{\varphi}) = {2M_b\over\dot{\psi}sin\theta}\tag6
其中,M_b=M_{x'}sin\varphi+M_{y'}cos\varphi为外力矩矢量和在单位向量\pmb b上的投影。

\pmb n,\pmb b,x',y'​的关系示意图:

坐标系.png

因此,陀螺运动的动力学方程可由式(5)、式(6)以及式(4)中的第三个方程构成,即
\begin{aligned} (J_{x'}cos^2\varphi+J_{y'}sin^2\varphi)\dot{\varphi}+[J_{z'}- (J_{y'}&cos^2\varphi+J_{x'}sin^2\varphi)](\dot{\psi}cos\theta+\dot{\varphi}) = {M_n\over\dot{\psi}sin\theta}\\ (J_{x'}-J_{y'})sin2\varphi(\dot{\psi}&cos\theta+2\dot{\varphi}) = {2M_b\over\dot{\psi}sin\theta}\\ J_{z'}\ddot{\varphi}+{(J_{y'}-J_{x'})\over2}&(\dot{\psi}sin\theta)^2sin2\varphi =0 \end{aligned} \tag7

当定点运动刚体对定点O的两个惯量主轴的转动惯量相等时(如J_{x'}=J_{y'}),则称刚体为动力学对称。由于陀螺通常为绕质量对称轴Oz'的旋转体,因此J_{x'}=J_{y'}=J。式(7)可表示为:
\begin{split} & [J_{z'}(\dot{\psi}cos\theta+\dot{\varphi})-J\dot{\psi}cos\theta]\dot{\psi}sin\theta=M_n\\ & 0=M_b\\ & \ddot{\varphi}=0 \end{split} \tag8
若陀螺在运动过程中,\theta\dot{\varphi}\dot{\psi}保持为常量,则称陀螺作规则进动。式(8)为陀螺规则进动的动力学方程。方程表明:陀螺自旋角速度大小不变,外力矩矢量始终平行于节线且大小为常量。

陀螺作规则进动的要求:作用在陀螺上的外力对O点之矩有:M_o=M_n \pmb n,其中M_n由式(8)中的第一方程给出。

两种特殊情况:

(1)若Oz轴和Oz'轴垂直时,式(8)中第一个方程表示为:
J_{z'}\dot{\varphi}\dot{\psi}=M_n \tag9
(2)若|\dot{\varphi}|>>|\dot{\psi}|,并略去\dot{\psi}^2项时,式(8)中第一个方程可以表示为:
J_{z'}\dot{\varphi}\dot{\psi}sin\theta=M_n \tag{10}
还可以将式(10)表示成矢量形式:
\pmb \omega_{\psi}\times J_{z'}\pmb \omega_{\varphi} = \pmb M_o \tag{11}
式(11)称为陀螺近似理论的进动方程。当Oz\bot O{z'}时,陀螺近似理论的进动方程恰好给出的是精确解。

对陀螺施加外力矩\pmb M_o的物体将受到陀螺的反作用力矩,设该力矩为\pmb M_g,从而:\pmb M_g=\pmb M_o

力矩\pmb M_g也称为陀螺力矩

陀螺力矩的作用效应称为陀螺效应。在具有高速转动部件的装置中,只要自转轴被迫在空间中改变方向,就会产生陀螺效应。

证明:刚体绕最大或最小惯量主轴的转动是稳定的

z'轴是刚体的最大或最小惯量主轴,证明:\omega_{z'0}\approx \omega_{z'}(t),\pmb k'_0 \approx \pmb k

根据欧拉动力学方程,当刚体作定轴转动运动时,外力对质心之矩为零,则:
\begin{eqnarray*} J_{x'} {{d\omega_{x'}}\over{dt}} + (J_{z'}-J_{y'})\omega_{y'}\omega_{z'}=0 \tag1\\ J_{y'} {{d\omega_{y'}}\over{dt}} + (J_{x'}-J_{z'})\omega_{z'}\omega_{x'}=0 \tag2 \\ J_{z'} {{d\omega_{z'}}\over{dt}} + (J_{y'}-J_{x'})\omega_{x'}\omega_{y'}=0 \tag3 \end{eqnarray*}
(1)\times (J_{z'}-J_{x'})\omega_{x'}+(2)\times (J_{z'}-J_{y'})\omega_{y'}得:
J_{x'}(J_{z'}-J_{x'})\dot{\omega}_{x'}\omega_{x'}+J_{y'}(J_{z'}-J_{y'})\dot{\omega}_{y'}\omega_{y'}=0
A=J_{x'}(J_{z'}-J_{x'})\space B= J_{y'}(J_{z'}-J_{y'})。根据z'轴的性质,可得:A \cdot B > 0
A\dot{\omega}_{x'}\omega_{x'}+B\dot{\omega}_{y'}\omega_{y'}=0
两边同时乘以dt
A\omega_{x'}d\omega_{x'}+B\omega_{y'}d\omega_{y'} = 0
积分得
A\omega_{x'}^2+B\omega_{y'}^2 =C \tag4
A、B同号知A、B、C同号,不妨设:A>0、B>0、C>0

初始t_0时,有C=A\omega_{x'}^2(t_0)+B\omega_{y'}^2(t_0) \tag5

t=t_0时,刚体角速度仅沿z'方向,即
|\omega_{x'}(t_0)|<\epsilon,|\omega_{y'}(t_0)|<\epsilon
由式(5)得:
C<(A+B)\epsilon^2

由式(4)得:
|\omega_{x'}(t)| \le \sqrt{C\over A} < \epsilon\sqrt{{A+B}\over A} <M\epsilon = \epsilon^*\\ |\omega_{y'}(t)| \le \sqrt{C\over B} < \epsilon\sqrt{{A+B}\over B} <M\epsilon = \epsilon^*
其中,M = max\{\sqrt{{A+B}\over A},\sqrt{{A+B}\over B}\}

t>t_0时,必有
|\omega_{x'}(t)|<\epsilon^*,|\omega_{y'}(t)|<\epsilon^* \tag6

刚体对质心C的动量矩为:\pmb L_C =J_{x'}\omega_{x'} \pmb i'+J_{y'}\omega_{y'}\pmb j'+J_{z'}\omega_{z'} \pmb k'

由于外力对质心之矩为零,故:{{d\pmb L_C}\over{dt}} = 0,即L_C(t) = L_C(t_0) \tag7

t= 0时,刚体作定轴转动,t=t_0时,受到一个微小的扰动,使得:
|\omega_{x'}(t_0)| \le \epsilon,|\omega_{y'}(t_0)|\le\epsilon,|\omega_{z'0}|>>1
则有:
\pmb L_C(t_0)=J_{x'}\omega_{x'}(t_0) \pmb i_0'+J_{y'}\omega_{y'}(t_0) \pmb j_0'+J_{z'}\omega_z'(t_0) \pmb k_0' \approx J_{z'}\omega_{z'0}\pmb k_0'
t>t_0时,由式(6)可知:
\pmb L_C(t)=J_{x'}\omega_{x'}(t) \pmb i'+J_{y'}\omega_{y'}(t) \pmb j'+J_{z'}\omega_z'(t) \pmb k' \approx J_{z'}\omega_{z'}\pmb k'
结合式(7),得:\omega_{z'0} \approx \omega_{z'}(t),\pmb k_0'\approx \pmb k'

即定轴转动刚体,当转速足够大时,受到微小扰动后,其之后的运动是稳定的,扰动对刚体运动的影响不随时间的增加而增加。

参考资料:《理论力学(第二版)》(谢传锋 王琪主编)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。