第1部 分结语
前三章借助商界、体育、政治等领域的例子作为辅助工具,介绍了许多概念和方法。后面的章节,我会实际运用这些概念和技巧。
对这些概念和技巧进行回顾和总结。
博弈是一种策略的相互依存状况:你的选择(即策略)将会得到什么结果,取决于另一个或者另一群有目的的行动者的选择。处于一个博弈中的决策者称为参与者,而他们的选择称为行动。一个博弈当中的参与者的利益可能严格对立,一人所得永远等于另一人所失。这样的博弈称为零和博弈。
不过,更常见的情况是,既有共同利益,也有利益冲突,从而可能出现导致共同受益或者共同受害的策略组合。但是.我们通常还是会把这个博弈当中的其他参与者称为一方的对手。
一个博弈的行动可能是相继进行,也可能是同时进行。在相继行动的博弈里,存在一条线性思维链:假如我这么做,我的对手可以那么做,反过来我应该这样应对……这种博弈通过描绘博弈树进行研究。只要遵循法则
1:向前展望,倒后推理,就能找出最佳行动方式。
而在同时行动的博弈中,存在一个逻辑循环的推理过程:我认为他认为我认为……这个循环必须解开,一方必须看穿对手的行动,哪怕他在行动的时候并不知道这是怎么一回事。要想解开这么一种博弈,可以建立一张图,这张图能显示所有可能想象得到的策略组合将会相应产生什么结果。然后按照下列步骤进行分析。
首先看参与各方有没有优势策略,优势策略意味着,无论对手采取什么策略,这一策略都将胜过其他任何策略。
这就引出法则2:假如你有一个优势策略,请照办。假如你没有优势策略,但你的对手有,那么,尽管认定他一定会照办吧,然后相应选择你自己的最佳策略。
接着,假如没有一方拥有优势策略,那就看看有没有人拥有一个劣势策略,劣势策略意味着无论对手采取什么策略,这一策略都将逊于其他任何策略。如果有,请遵循法则
3:剔除所有劣势策略,不予考虑,如此一步一步做下去。假如在这么做的过程当中,在简化之后的博弈里出现了一个优势策略,应该采用这个优势策略。假如这个过程以一个独一无二的结果告终,那就意味着你找到了参与者的行动法则以及这个博弈的结果。即便这个过程可能不会导出一个独一无二的结果,这么做也可以缩小整个博弈的规模,使其变得更加容易控制。
最后,假如既没有优势策略,又没有劣势 策略,又或者这个博弈已经经过第二步进行了最大限度的简化,那么,请遵循法则4:寻找这个博弈的均衡,即一对策略,按照这对策略做,各个参与者的行动都是对对方行动的最佳回应。假如存在一个这样的独一无二的均衡,我们就有许多很好的证据证明为什么所有参与者都应该选择这个均衡。假如存在许多这样的均衡,你就需要用一个普遍认同的法则或者惯例做出取舍。假如并不存在这样的均衡,这通常意味着一切有规则可循的行为都有可能被对方加以利用,这时候你需要将你的策略混合运用。
在实践当中,博弈可能包含一些相继行动过程,也可能包含一些同时行动过程,因此须将上述技巧综合起来,灵活运用,思考和决定自己的最佳行动应该是什么。