Google Is Working On A New Type Of Algorithm Called “Thought Vectors”

Google Is Working On A New Type Of Algorithm Called “Thought Vectors” 

Professor Geoff Hinton, who was hired by Google two years ago to develop intelligent operating systems, said that the company is on the brink of developing algorithms with the capacity for logic, natural conversation and even flirtation.

The researcher told the Guardian that Google is working on a new type of algorithm designed to encode thoughts as sequences of numbers – something he described as “thought vectors”.

Although the work is at an early stage, he said there is a plausible path from the current software to a more sophisticated version that would have something approaching human-like capacity for reasoning and logic. “Basically, they’ll have common sense.”

The idea that thoughts can be captured and distilled down to cold sequences of digits is controversial, Hinton said. “There’ll be a lot of people who argue against it, who say you can’t capture a thought like that, he added. But there’s no reason why not. I think you can capture a thought by a vector.”

Hinton believes that the “thought vector” approach will help crack two of the central challenges in artificial intelligence: mastering natural, conversational language and the ability to make leaps of logic.

He painted a picture of the near-future in which people will chat with their computers, not only to extract information, but for fun – reminiscent of the film, Her, in which Joaquin Phoenix falls in love with his intelligent operating system.

“It’s not that far-fetched,” Hinton said. “I don’t see why it shouldn’t be like a friend. I don’t see why you shouldn’t grow quite attached to them.”

In the past two years, scientists have already made significant progress in overcoming this challenge.

Richard Socher, an artificial intelligence scientist at Stanford University, recently developed a program called NaSent that he taught to recognise human sentiment by training it on 12,000 sentences taken from the film review website Rotten Tomatoes.

Part of the initial motivation for developing “thought vectors” was to improve translation software, such as Google Translate, which currently uses dictionaries to translate individual words and searches through previously translated documents to find typical translations for phrases. Although these methods often provide the rough meaning, they are also prone to delivering nonsense and dubious grammar.

Thought vectors, Hinton explained, work at a higher level by extracting something closer to actual meaning.

Ascribing Each Word A Set Of Vectors

The technique works by ascribing each word a set of numbers (or vector) that define its position in a theoretical “meaning space” or cloud. A sentence can be looked at as a path between these words, which can in turn be distilled down to its own set of numbers, or thought vector.

The “thought” serves as the bridge between the two languages because it can be transferred into the French version of the meaning space and decoded back into a new path between words.

The key is working out which numbers to assign each word in a language – this is where deep learning comes in.Initially the positions of words within each cloud are ordered at random and the translation algorithm begins training on a dataset of translated sentences.

At first the translations it produces are nonsense, but a feedback loop provides an error signal that allows the position of each word to be refined until eventually the positions of words in the cloud captures the way humans use them – effectively a map of their meanings.

Hinton said that the idea that language can be deconstructed with almost mathematical precision is surprising, but true.

“If you take the vector for Paris and subtract the vector for France and add Italy, you get Rome,” he said. “It’s quite remarkable.”

Dr Hermann Hauser, a Cambridge computer scientist and entrepreneur, said that Hinton and others could be on the way to solving what programmers call the “genie problem”.

“With machines at the moment, you get exactly what you wished for,” Hauser said. “The problem is we’re not very good at wishing for the right thing. When you look at humans, the recognition of individual words isn’t particularly impressive, the important bit is figuring out what the guy wants.”

“Hinton is our number one guru in the world on this at the moment,” he added.

Some aspects of communication are likely to prove more challenging, Hinton predicted.“Irony is going to be hard to get,” he said. “You have to be master of the literal first. But then, Americans don’t get irony either. Computers are going to reach the level of Americans before Brits.”

A flirtatious program would “probably be quite simple” to create, however. “It probably wouldn’t be subtly flirtatious to begin with, but it would be capable of saying borderline politically incorrect phrases,” he said.

Many of the recent advances in AI have sprung from the field of deep learning, which Hinton has been working on since the 1980s. At its core is the idea that computer programs learn how to carry out tasks by training on huge datasets, rather than being taught a set of inflexible rules.

With the advent of huge datasets and powerful processors, the approach pioneered by Hinton decades ago has come into the ascendency and underpins the work of Google’s artificial intelligence arm, DeepMind, and similar programs of research at Facebook and Microsoft.

Hinton played down concerns about the dangers of AI raised by those such as the American entrepreneur Elon Musk, who has described the technologies under development as humanity’s greatest existential threat. “The risk of something seriously dangerous happening is in the five year timeframe. Ten years at most,” Musk warned last year.

“I’m more scared about the things that have already happened,” said Hinton in response. “The NSA is already bugging everything that everybody does. Each time there’s a new revelation from Snowden, you realise the extent of it.”

“I am scared that if you make the technology work better, you help the NSA misuse it more,” he added. “I’d be more worried about that than about autonomous killer robots.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,875评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,569评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,475评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,459评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,537评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,563评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,580评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,326评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,773评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,086评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,252评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,921评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,566评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,190评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,435评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,129评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,125评论 2 352

推荐阅读更多精彩内容