Tensowflow语言类似于Spark Streaming或者storm DSL语言,先定义computer graph,最后run。调试困难。直接上代码
import tensorflow as tf
with tf.Session() as sess:
filename_queue = tf.train.string_input_producer(["file0.csv", "file1.csv", "file2.csv"],num_epochs = 5)
#sess.run(tf.initialize_all_variables())
#sess.run(tf.initialize_local_variables())
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
threads = tf.train.start_queue_runners(sess=sess)
for _ in range(10):
k, v = sess.run([key, value])
print("key:{},value:{}".format(k,v))
num_epochs居然被定义为local variable。得先initialize。Tensowflow的 variables initilize特别的坑。有如下几种:
1.tf.initialize_all_variables(),不处理local variable
2.tf.initialize_local_variables(),只处理local variable。
最大的问题,类似于声明式语言如C,变量得先定义,然后才能赋值。本段代码中epochs是在下面语句中声明,
filename_queue = tf.train.string_input_producer(["file0.csv", "file1.csv", "file2.csv"],num_epochs = 5),
赋值只能放在这条语句下面!!!!!!!!!!!!!!!!!!!!!!否则还是uninitialized,狗屎