大数据经典算法解析(5)一EM算法

  姓名:崔升    学号:14020120005

  转载自:http://www.cnblogs.com/en-heng/p/5994192.html

【嵌牛导读】:

  EM作为一种经典的处理大数据的算法,是我们在学习互联网大数据时不得不去了解的一种常用算法

【嵌牛鼻子】:经典大数据算法之EM简单介绍

【嵌牛提问】:EM是一种怎么的算法,其如何去观测其中隐变量的?

【嵌牛正文】:

1. 极大似然

极大似然(Maximum Likelihood)估计为用于已知模型的参数估计的统计学方法。比如,我们想了解抛硬币是正面(head)的概率分布θθ;那么可以通过最大似然估计方法求得。假如我们抛硬币1010次,其中88次正面、22次反面;极大似然估计参数θθ值:

θ^=argmaxθl(θ)=argmaxθθ8(1−θ)2θ^=arg⁡maxθl(θ)=arg⁡maxθθ8(1−θ)2

其中,l(θ)l(θ)为观测变量序列的似然函数(likelihood function of the observation sequence)。对l(θ)l(θ)求偏导

∂l(θ)∂θ=θ7(1−θ)(8−10θ)⇒θ^=0.8∂l(θ)∂θ=θ7(1−θ)(8−10θ)⇒θ^=0.8

因为似然函数l(θ)l(θ)不是凹函数(concave),求解极大值困难。一般地,使用与之具有相同单调性的log-likelihood,如图所示


凹函数(concave)与凸函数(convex)的定义如图所示:


从图中可以看出,凹函数“容易”求解极大值,凸函数“容易”求解极小值。

2. EM算法

EM算法(Expectation Maximization)是在含有隐变量(latent variable)的模型下计算最大似然的一种算法。所谓隐变量,是指我们没有办法观测到的变量。比如,有两枚硬币A、B,每一次随机取一枚进行抛掷,我们只能观测到硬币的正面与反面,而不能观测到每一次取的硬币是否为A;则称每一次的选择抛掷硬币为隐变量。

用Y表示观测数据,Z表示隐变量;Y和Z连在一起称为完全数据( complete-data ),观测数据Y又称为不完全数据(incomplete-data)。观测数据的似然函数:

P(Y|θ)=∑ZP(Z|θ)P(Y|Z,θ)P(Y|θ)=∑ZP(Z|θ)P(Y|Z,θ)

求模型参数的极大似然估计:

θ^=argmaxθlogP(Y|θ)θ^=arg⁡maxθlog⁡P(Y|θ)

因为含有隐变量,此问题无法求解。因此,Dempster等人提出EM算法用于迭代求解近似解。EM算法比较简单,分为两个步骤:

E步(E-step),以当前参数θ(i)θ(i)计算ZZ的期望值

Q(θ,θ(i))=EZ[logP(Y,X|θ)|Y,θ(i)]Q(θ,θ(i))=EZ[log⁡P(Y,X|θ)|Y,θ(i)]

M步(M-step),求使Q(θ,θ(i))Q(θ,θ(i))极大化的θθ,确定第i+1i+1次迭代的参数的估计值θ(i+1)θ(i+1)

θ(i+1)=argmaxθQ(θ,θ(i))θ(i+1)=arg⁡maxθQ(θ,θ(i))

如此迭代直至算法收敛。关于算法的推导及收敛性证明,可参看李航的《统计学习方法》及Andrew Ng的《CS229 Lecture notes》。这里有一些极大似然以及EM算法的生动例子。

3. 实例

[2]中给出极大似然与EM算法的实例。如图所示,有两枚硬币A、B,每一个实验随机取一枚抛掷10次,共5个实验,我们可以观测到每一次所取的硬币,估计参数A、B为正面的概率θ=(θA,θB)θ=(θA,θB),根据极大似然估计求解


如果我们不能观测到每一次所取的硬币,只能用EM算法估计模型参数,算法流程如图所示:


隐变量ZZ为每次实验中选择A或B的概率,则第一个实验选择A的概率为

P(z1=A|y1,θ(0))=P(z1=A|y1,θ(0))P(z1=A|y1,θ(0))+P(z1=B|y1,θ(0))=0.65∗0.450.65∗0.45+0.510=0.45P(z1=A|y1,θ(0))=P(z1=A|y1,θ(0))P(z1=A|y1,θ(0))+P(z1=B|y1,θ(0))=0.65∗0.450.65∗0.45+0.510=0.45

按照上面的计算方法可依次求出隐变量ZZ,然后计算极大化的θ(i)θ(i)。经过10次迭代,最终收敛。

4. 参考资料

[1] 李航,《统计学习方法》.

[2] Chuong B Do & Serafim Batzoglou, What is the expectation maximization algorithm?

[3] Pieter Abbeel,Maximum Likelihood (ML), Expectation Maximization (EM).

[4] Rudan Chen,【机器学习算法系列之一】EM算法实例分析.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容

  • 转载 http://blog.csdn.net/zouxy09 EM算法是一种迭代算法,用于含有隐含变量的概率模型...
    Jlan阅读 2,154评论 1 13
  • 在上一篇文章写到了EM算法的收敛性证明以后便匆匆的结尾,然后我出去玩了几天,玩的爽了,回来开始继续补之前的flag...
    云时之间阅读 3,126评论 2 8
  • thiele插值算法 1点插值算法 function [C,c]=thiele(X,Y,Z)%X为插值点横坐标,Y...
    00crazy00阅读 1,986评论 0 4
  • 整理自李航老师的《统计学习方法》一书 1、引言 概率模型有时既含有观测变量,又含有隐变量或潜在变量,如果概率模型的...
    文哥的学习日记阅读 6,954评论 0 2
  • 有情人,难相忘 你若是等过一个人,就会知道有一个人也在等你 01 去年,认识了一个和我同是东北的小姑娘,也很荣幸得...
    北苏阅读 490评论 2 2