2021-09-17 (python data science handbook)

Summary (Beginning -> keyboard shortcuts in the ipython shell)

  1. ipython, jupyter notebook
  2. shortcut for jupyter notebook: control enter, option enter, command enter, shift enter
    (command mode and edit mode, by esc and return)
  3. python 2 or 3, depends
  4. use help function (help(function)), or function? or L.insert?
    (really useful)
  5. remember to put description at the first line of your function
    ("""description""")
  6. tab completion (very useful -> like the search list), but not work on notebook, probably need to check why
    wild search: * (indicates other string)

Notes

  1. IPython and Jupyter: these packages provide the computational environment in which many Python-using data scientists work.
  2. NumPy: this library provides the ndarray for efficient storage and manipulation of dense data arrays in Python.
  3. Pandas: this library provides the DataFrame for efficient storage and manipulation of labeled/columnar data in Python.
  4. Matplotlib: this library provides capabilities for a flexible range of data visualizations in Python.
  5. Scikit-Learn: this library provides efficient & clean Python implementations of the most important and established machine learning algorithms.
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容