冒泡排序及各种算法排序总结

项目需要,自己上学的时候接触过一些算法,我记得当时算法那门考了系里最高分,98分,想着没什么用呢,谁知道这两天就用到了,项目中涉及到了排序,我就重温了一下算法,说到算法,就我个人而言,第一就是想到了冒泡(最简单,也是最容易理解),但是项目中我没用冒泡,怕同事看到了说我低级,虽然算法只有老大写(别的同事都不写)

,我用了选择排序,显得难了点,感觉有些技术含量的,下边就是我用的选择排序算法:

- (NSArray *)sortArray:(NSMutableArray *)array {

//选择排序

/* 思想:首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此类推,直到所有元素均排序完毕。具体做法是:选择最小的元素与未排序部分的首部交换,使得序列的前面为有序。

*/

//    for (NSInteger i = 0; i

//        NSInteger k = i;

//        for (NSInteger j = i+1; j < array.count; j++) {

//            if ([[array objectAtIndex:j]integerValue] > [[array objectAtIndex:k]integerValue]) {

//                k = j;

//            }

//        }

//        if (k != i) {

//            [array exchangeObjectAtIndex:i withObjectAtIndex:k];

//        }

//    }

//    NSArray *destionArray = [NSArray arrayWithArray:array];

//    NSLog(@"%@",destionArray);

/*冒泡排序

基本思想:通过无序区中相邻记录关键字间的比较和位置的交换,使关键字最小的记录如气泡一般逐渐往上“漂浮”直至“水面”。

*/

for (NSInteger i = 0; i

for (NSInteger j = array.count-1; j>i; j--) {

if ([array[j]integerValue]  > [array[j-1]integerValue]) {

[array exchangeObjectAtIndex:j withObjectAtIndex:j-1];

}

}

}

NSLog(@"%@",array);

NSArray *destionArray = [NSArray arrayWithArray:array];

return destionArray;

}

我用的顺手的也就是上边两个,下边的是大神总结的,我也拿过来大家一起分享一下:

排序算法经过了很长时间的演变,产生了很多种不同的方法。对于初学者来说,对它们进行整理便于理解记忆显得很重要。每种算法都有它特定的使用场合,很难通用。因此,我们很有必要对所有常见的排序算法进行归纳。

我不喜欢死记硬背,我更偏向于弄清来龙去脉,理解性地记忆。比如下面这张图,我们将围绕这张图来思考几个问题。

上面的这张图来自一个PPT。它概括了数据结构中的所有常见的排序算法。现在有以下几个问题:

1、每个算法的思想是什么?

2、每个算法的稳定性怎样?时间复杂度是多少?

3、在什么情况下,算法出现最好情况 or 最坏情况?

4、每种算法的具体实现又是怎样的?

这个是排序算法里面最基本,也是最常考的问题。下面是我的小结。

一、直接插入排序(插入排序)。

1、算法的伪代码(这样便于理解):

INSERTION-SORT (A, n)             A[1 . . n]

for j ←2 to n

do key ← A[ j]

i ← j – 1

while i > 0 and A[i] > key

do A[i+1] ← A[i]

i ← i – 1

A[i+1] = key

2、思想:如下图所示,每次选择一个元素K插入到之前已排好序的部分A[1…i]中,插入过程中K依次由后向前与A[1…i]中的元素进行比较。若发现发现A[x]>=K,则将K插入到A[x]的后面,插入前需要移动元素。

3、算法时间复杂度。

最好的情况下:正序有序(从小到大),这样只需要比较n次,不需要移动。因此时间复杂度为O(n)

最坏的情况下:逆序有序,这样每一个元素就需要比较n次,共有n个元素,因此实际复杂度为O(n­2)

平均情况下:O(n­2)

4、稳定性。

理解性记忆比死记硬背要好。因此,我们来分析下。稳定性,就是有两个相同的元素,排序先后的相对位置是否变化,主要用在排序时有多个排序规则的情况下。在插入排序中,K1是已排序部分中的元素,当K2和K1比较时,直接插到K1的后面(没有必要插到K1的前面,这样做还需要移动!!),因此,插入排序是稳定的。

5、代码(c版) blog.csdn.com/whuslei

二、希尔排序(插入排序)

1、思想:希尔排序也是一种插入排序方法,实际上是一种分组插入方法。先取定一个小于n的整数d1作为第一个增量,把表的全部记录分成d1个组,所有距离为d1的倍数的记录放在同一个组中,在各组内进行直接插入排序;然后,取第二个增量d2(<d1),重复上述的分组和排序,直至所取的增量dt=1(dt

例如:将 n 个记录分成 d 个子序列:

{ R[0],   R[d],     R[2d],…,     R[kd] }

{ R[1],   R[1+d], R[1+2d],…,R[1+kd] }

{ R[d-1],R[2d-1],R[3d-1],…,R[(k+1)d-1] }

说明:d=5 时,先从A[d]开始向前插入,判断A[d-d],然后A[d+1]与A[(d+1)-d]比较,如此类推,这一回合后将原序列分为d个组。<由后向前>

2、时间复杂度。

最好情况:由于希尔排序的好坏和步长d的选择有很多关系,因此,目前还没有得出最好的步长如何选择(现在有些比较好的选择了,但不确定是否是最好的)。所以,不知道最好的情况下的算法时间复杂度。

最坏情况下:O(N*logN),最坏的情况下和平均情况下差不多。

平均情况下:O(N*logN)

3、稳定性

由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。(有个猜测,方便记忆:一般来说,若存在不相邻元素间交换,则很可能是不稳定的排序。)

4、代码(c版) blog.csdn.com/whuslei

三、冒泡排序(交换排序)

1、基本思想:通过无序区中相邻记录关键字间的比较和位置的交换,使关键字最小的记录如气泡一般逐渐往上“漂浮”直至“水面”。

2、时间复杂度

最好情况下:正序有序,则只需要比较n次。故,为O(n)

最坏情况下:逆序有序,则需要比较(n-1)+(n-2)+……+1,故,为O(N*N)

3、稳定性

排序过程中只交换相邻两个元素的位置。因此,当两个数相等时,是没必要交换两个数的位置的。所以,它们的相对位置并没有改变,冒泡排序算法是稳定的

4、代码(c版) blog.csdn.com/whuslei

四、快速排序(交换排序)

1、思想:它是由冒泡排序改进而来的。在待排序的n个记录中任取一个记录(通常取第一个记录),把该记录放入适当位置后,数据序列被此记录划分成两部分。所有关键字比该记录关键字小的记录放置在前一部分,所有比它大的记录放置在后一部分,并把该记录排在这两部分的中间(称为该记录归位),这个过程称作一趟快速排序。

说明:最核心的思想是将小的部分放在左边,大的部分放到右边,实现分割。

2、算法复杂度

最好的情况下:因为每次都将序列分为两个部分(一般二分都复杂度都和logN相关),故为 O(N*logN)

最坏的情况下:基本有序时,退化为冒泡排序,几乎要比较N*N次,故为O(N*N)

3、稳定性

由于每次都需要和中轴元素交换,因此原来的顺序就可能被打乱。如序列为 5 3 3 4 3 8 9 10 11会将3的顺序打乱。所以说,快速排序是不稳定的!

4、代码(c版)

五、直接选择排序(选择排序)

1、思想:首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此类推,直到所有元素均排序完毕。具体做法是:选择最小的元素与未排序部分的首部交换,使得序列的前面为有序。

2、时间复杂度。

最好情况下:交换0次,但是每次都要找到最小的元素,因此大约必须遍历N*N次,因此为O(N*N)。减少了交换次数!

最坏情况下,平均情况下:O(N*N)

3、稳定性

由于每次都是选取未排序序列A中的最小元素x与A中的第一个元素交换,因此跨距离了,很可能破坏了元素间的相对位置,因此选择排序是不稳定的!

4、代码(c版)blog.csdn.com/whuslei

六、堆排序

1、思想:利用完全二叉树中双亲节点和孩子节点之间的内在关系,在当前无序区中选择关键字最大(或者最小)的记录。也就是说,以最小堆为例,根节点为最小元素,较大的节点偏向于分布在堆底附近。

2、算法复杂度

最坏情况下,接近于最差情况下:O(N*logN),因此它是一种效果不错的排序算法。

3、稳定性

堆排序需要不断地调整堆,因此它是一种不稳定的排序

4、代码(c版,看代码后更容易理解!)

七、归并排序

1、思想:多次将两个或两个以上的有序表合并成一个新的有序表。

2、算法时间复杂度

最好的情况下:一趟归并需要n次,总共需要logN次,因此为O(N*logN)

最坏的情况下,接近于平均情况下,为O(N*logN)

说明:对长度为n的文件,需进行logN 趟二路归并,每趟归并的时间为O(n),故其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlgn)。

3、稳定性

归并排序最大的特色就是它是一种稳定的排序算法。归并过程中是不会改变元素的相对位置的。

4、缺点是,它需要O(n)的额外空间。但是很适合于多链表排序。

5、代码(略)blog.csdn.com/whuslei

八、基数排序

1、思想:它是一种非比较排序。它是根据位的高低进行排序的,也就是先按个位排序,然后依据十位排序……以此类推。示例如下:

2、算法的时间复杂度

分配需要O(n),收集为O(r),其中r为分配后链表的个数,以r=10为例,则有0~9这样10个链表来将原来的序列分类。而d,也就是位数(如最大的数是1234,位数是4,则d=4),即"分配-收集"的趟数。因此时间复杂度为O(d*(n+r))。

3、稳定性

基数排序过程中不改变元素的相对位置,因此是稳定的!

4、适用情况:如果有一个序列,知道数的范围(比如1~1000),用快速排序或者堆排序,需要O(N*logN),但是如果采用基数排序,则可以达到O(4*(n+10))=O(n)的时间复杂度。算是这种情况下排序最快的!!

Hope To Help You !

技术交流群:141624834 进群请说你看的那篇博客,我们一起探讨成长

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容