Elasticsearch参数search_type与分布式原理

要不是遇到这个坑我不会去了解这个参数。

——《论通读文档的重要性》

问题

起因是搜索结果排序的时候遇到一个奇怪的问题,一个在我理解应该排第一的结果被放在了后面,而且评分相差接近两倍之多。

分析

通过explain发现结果中第一的那个文档与我认为应该排第一的文档的idf竟然相差甚远。大家知道,idf的定义如下(摘自维基百科):

逆向文件频率(inverse document frequency,idf)是一个词语普遍重要性的度量。某一特定词语的idf,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取以10为底的对数得到。

从定义可知,idf仅仅与搜索关键词有关,与文档无关。所以同一输入来说,所有的文档应该是共享同一idf的。但事实上并非如此。原因就在elasticsearch的分布式机制。elasticsearch的索引(index)会被分片(shard),而每一个分片相当于一个独立的搜索引擎。每一次搜索任务会被分配到不同的shard去执行,然后将各个shard的结果汇总起来得到最终我们看到的结果。而评分的过程会在shard完成,因此不同分片下,会得到不同的idf。这里需要有个前提假设是文档数量足够多的时候各个分片的词频会趋近,因此idf的差异也就不大。但是如果文档数量不够多的时候启用分片,可能词频在不同分片会有较大的差异,我遇到的情况就是这样的。这时候就需要我们了解一下今天故事的主角search_type

解决

这个参数的定义大家自行查阅文档,我这里简单介绍它的两个取值:query_then_fetch和 dfs_query_then_fetch。

query_then_fetch 是默认值,它对词频的计算方式和所在的问题如上文所述。

dfs_query_then_fetch 就是为了解决我们今天遇到的问题的,当search_type设置为它的时候,词频的计算方法是整个索引(index)而不是单个分片(shard),这样会得到更准确的tf-idf评分。

不过文档上面比较讨厌的是没有说明这个参数是加在哪里的,答案就是URL的query string,与pretty、explain等参数用法相同。

后记

想必大家可以想到另一个解决方案那就是在创建索引的时候设置只有一个分片,这样也不需要search_type了。其实如果数据的确不多的话,用一个分片足矣。

实验

为了更直白理解上文的叙述我还设计了一个实验,由于简书编辑器没有找到合适的插入代码的方式,有兴趣的读者可前往我的个人博客查看

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容