Spark Streaming:案例动手实战并在电光石火间理解其工作原理

案例动手实战并在电光石火间理解其工作原理

      流(Streaming),在大数据时代为数据流处理,就像水流一样,是数据流;既然是数据流处理,就会想到数据的流入、数据的加工、数据的流出。

      日常工作、生活中数据来源很多不同的地方。例如:工业时代的汽车制造、监控设备、工业设备会产生很多源数据;信息时代的电商网站、日志服务器、社交网络、金融交易系统、黑客攻击、垃圾邮件、交通监控等;通信时代的手机、平板、智能设备、物联网等会产生很多实时数据,数据流无处不在。

在大数据时代SparkStreaming能做什么?

      平时用户都有网上购物的经历,用户在网站上进行的各种操作通过Spark Streaming流处理技术可以被监控,用户的购买爱好、关注度、交易等可以进行行为分析。在金融领域,通过Spark Streaming流处理技术可以对交易量很大的账号进行监控,防止罪犯洗钱、财产转移、防欺诈等。在网络安全性方面,黑客攻击时有发生,通过Spark Streaming流处理技术可以将某类可疑IP进行监控并结合机器学习训练模型匹配出当前请求是否属于黑客攻击。其他方面,如:垃圾邮件监控过滤、交通监控、网络监控、工业设备监控的背后都是Spark Streaming发挥强大流处理的地方。

大数据时代,数据价值一般怎么定义?

       所有没经过流处理的数据都是无效数据或没有价值的数据;数据产生之后立即处理产生的价值是最大的,数据放置越久或越滞后其使用价值越低。以前绝大多数电商网站盈利走的是网络流量(即用户的访问量),如今,电商网站不仅仅需要关注流量、交易量,更重要的是要通过数据流技术让电商网站的各种数据流动起来,通过实时流动的数据及时分析、挖掘出各种有价值的数据;比如:对不同交易量的用户指定用户画像,从而提供不同服务质量;准对用户访问电商网站板块爱好及时推荐相关的信息。

SparkStreaming VSHadoopMR:

      Spark Streaming是一个准实时流处理框架,而Hadoop MR是一个离线、批处理框架;很显然,在数据的价值性角度,Spark Streaming完胜于Hadoop MR。

SparkStreaming VS Storm:

      Spark Streaming是一个准实时流处理框架,处理响应时间一般以分钟为单位,也就是说处理实时数据的延迟时间是秒级别的;Storm是一个实时流处理框架,处理响应是毫秒级的。所以在流框架选型方面要看具体业务场景。需要澄清的是现在很多人认为Spark Streaming流处理运行不稳定、数据丢失、事务性支持不好等等,那是因为很多人不会驾驭Spark Streaming及Spark本身。在Spark Streaming流处理的延迟时间方面,DT_Spark大数据梦工厂即将推出的Spark定制版本,会将Spark Streaming的延迟从秒级别推进到100毫秒之内甚至更少。

SparkStreaming优点:

1、提供了丰富的API,企业中能快速实现各种复杂的业务逻辑。

2、流入Spark Streaming的数据流通过和机器学习算法结合,完成机器模拟和图计算。

3、Spark Streaming基于Spark优秀的血统。

SparkStreaming能不能像Storm一样,一条一条处理数据?

Storm处理数据的方式是以条为单位来一条一条处理的,而Spark Streaming基于单位时间处理数据的,SparkStreaming能不能像Storm一样呢?答案是:可以的。

业界一般的做法是Spark Streaming和Kafka搭档即可达到这种效果,入下图:

Kafka业界认同最主流的分布式消息框架,此框架即符合消息广播模式又符合消息队列模式。

Kafka内部使用的技术:

1、  Cache

2、  Interface

3、  Persistence(默认最大持久化一周)

4、  Zero-Copy技术让Kafka每秒吞吐量几百兆,而且数据只需要加载一次到内核提供其他应用程序使用

外部各种源数据推进(Push)Kafka,然后再通过Spark Streaming抓取(Pull)数据,抓取的数据量可以根据自己的实际情况确定每一秒中要处理多少数据。

通过Spark Streaming动手实战wordCount实例

这里是运行一个Spark Streaming的程序:统计这个时间段内流进来的单词出现的次数. 它计算的是:他规定的时间段内每个单词出现了多少次。

1、先启动下Spark集群:

我们从集群里面打开下官方网站

接受这个数据进行加工,就是流处理的过程,刚才那个WordCount就是以1s做一个单位。

刚才运行的时候,为什么没有结果呢?因为需要数据源。

2、获取数据源:

新开一个命令终端,然后输入:

$nc -lk 9999

现在我们拷贝数据源进入运行:

然后按回车运行

DStream和RDD关系:

没有输入数据会打印的是空结果:

但是实际上,Job的执行是Spark Streaming框架帮我们产生的和开发者自己写的Spark代码业务逻辑没有关系,而且Spark Streaming框架的执行时间间隔可以手动配置,如:每隔一秒钟就会产生一次Job的调用。所以在开发者编写好的Spark代码时(如:flatmap、map、collect),不会导致job的运行,job运行是Spark Streaming框架产生的,可以配置成每隔一秒中都会产生一次job调用。

Spark Streaming流进来的数据是DStream,但Spark Core框架只认RDD,这就产生矛盾了?

Spark Streaming框架中,作业实例的产生都是基于rdd实例来产生,你写的代码是作业的模板,即rdd是作业的模板,模板一运行rdd就会被执行,此时action必须处理数据。RDD的模板就是DStream离散流,RDD之间存在依赖关系,DStream就有了依赖关系,也就构成了DStream 有向无环图。这个DAG图,是模板。Spark Streaming只不过是在附在RDD上面一层薄薄的封装而已。你写的代码不能产生Job,只有框架才能产生Job.

如果一秒内计算不完数据,就只能调优了.

作者:王家林

王家林微博,每日都有惊人spark技术内幕报出:http://weibo.com/ilovepains

资料来源于:DT_大数据梦工厂(IMF传奇行动绝密课程)

更多私密内容,请关注微信公众号:DT_Spark

如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上20:00开设的Spark永久免费公开课,地址YY房间号:68917580

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容