2018-09-16 深度学习发展简史

机器学习(machine learning, 涵盖深度学习的一个人工智能技术领域)是一项改变历史的技术。

人工智能领域分化为两个阵营:其一是规则式(rule-based)方法,其二是神经网络(neural network)方法。


1. 规则式的人工智能系统有时也称为符号式系统(symbolic systems)或专家系统。是由于该阵营的研究人员认为,要使人工智能软件更好地适应现实世界,必须将相关领域的人类专家的智慧编写进软件。他们用一系列写好的逻辑规则来教导计算机如何思考,如“若X,则Y”。这种方法很适用于简单且定义明确的游戏,但是当可能的选择或操作数目大增时,这种方法就行不通了。

2. “神经网络”阵营则另辟蹊径,他们不把人脑熟稔的逻辑规则传授给计算机,而是干脆在机器上重建人脑。科学研究结果已经得知,动物的智能只有一个源头--动物脑部错综复杂的神经元网络,于是这个阵营的研究人员决定从根源做起,模仿人脑结构,构建类似生物神经元网络的结构来收发信息。不同于规则式方法,人工神经元网络的建造者通常不会给人工智能系统设定决策规则,而只是把某一现象(图片、国际象棋赛、人声等)的大量例子输入人工神经元网络,让网络从这些数据中学习、识别规律。换言之,神经网络的原则是来自人的干预越少越好。

用以上两种方法处理某个简单问题如“辨识一张图片里是否有猫”,就可以看出他们的差别。规则式方法确定以“若X,则Y”的逻辑规则来帮助程序做出决策:“若一个圆形物体上方有两块三角形,那么,这张图片中可能有一只猫。”


神经网络方法则是把数百万张标示了“有猫”或“没有猫”的样本图片“喂”给计算机系统,让他自行从这数百万张图片中去辨察哪些特征和“猫”的标签最密切相关


神经网络从50年代开始至90年代末,一直处于冗长的寒冬期,使得神经网络复活,并让人工智能再次复兴的,是神经网络系统赖以生存的两项要素出现的变化,加上一项重大的技术型突破。神经网络需要大量的计算机运算力及数据:大量的数据样本数据输入系统,以“训练”程序去辨识形态,计算机运算力则让程序得以告诉分析样本数据。互联网的崛起带来了海量的数据:文本、图像、视频和点击、购买的数据等。如此多的数据,成了研究人员手中源源不断的实验材料,用来训练他们构建的人工神经网络。同时,计算机技术的不断发展,使得他们的算力越来越强,例如,我们现在手中的智能手机的运算力,甚至比美国国家航天局1969年登月计划中最先进计算机的运算力还高出几百万倍。这两项变化结合起来,为神经网络法的发展提供了优良的条件。


不过,彼时人工神经网络能做的事情仍然非常有限。复杂问题如果要得出准确的解雇,必须构建很多层的人工神经元,但是神经元层数增加后,研究人员当时还未找到针对新增神经元有效的训练方法。直到21世纪头10年的中期,深度学习这项重大技术的突破来了。找到了有效训练人工神经网络中新增神经元层的方法。性能大增的人工神经网络--现在有了新的名字:“深度学习(deep learning)”。正是这项技术的突破,人工智能才再次会到聚光灯下。

以深度学习的形式在次回到公众视野中的神经网络法不仅成功地让人工智能回暖,也第一次把人工智能真正的应用在现实世界中。研究人员、未来学家、科技公司CEO都开始讨论人工智能的巨大潜力:识别人类语言、翻译文件、识别图像、预测消费者行为、辨别欺诈行为、批准贷款、开车等

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容