SQL on Hadoop技术综述

SQL on Hadoop技术综述

一、系统架构

runtime framework v.s. mpp

在SQL on Hadoop系统中,有两种架构:

1、一种是基于某个运行时框架来构建查询引擎,典型案例是Hive;

2、另一种是仿照过去关系数据库的MPP架构,就是参考过去的MPP数据库架构打造一个专门的系统,于是就有了Impala,Presto等等。

前者现有运行时框架,然后套上sql层,后者则是从头打造一个一体化的查询引擎。

对于SQL on Hadoop系统很重要的一个评价指标就是:快。

DAG v.s. MR:最主要的优势,中间结果不写磁盘(除非内存不够),一气呵成。

•流水线计算:上游stage一出结果马上推送或者拉到下一个stage处理,比如多表join时前两个表有结果直接给第三个表,不像MR要等两个表完全join完再给第三个表join。
•高效的IO:本地查询没有多余的消耗,充分利用磁盘。这个后面细说。
•线程级别的并发:相比之下MR每个task要启动JVM,本身就有很大延迟,占用资源也多。
MPP模式也有其劣势:

•一个是扩展性不是很高,这在关系数据库时代就已经有过结论;
•另一个是容错性差,对于Impala来说一旦运行过程中出点问题,整个查询就挂了。
但是,经过不断的发展,Hive也能跑在DAG框架上了,不仅有Tez,还有Spark。上面提到的一些劣势,其实大都也可以在计算模型中解决。基于Spark的Spark SQL完全不逊色于Presto,基于Tez的Hive也不算很差,至少在并发模式下能超过Presto,足见MPP模式并不是绝对占上风的。

二、核心组件

不管是上面提到的那种架构,一个SQL on Hadoop系统一般都会有一些通用的核心组件,这些组件根据设计者的考虑放在不同的节点角色中,在物理上节点都按照master/worker的方式去做

三、执行计划

编译流程

从SQL到执行计划,大致分为5步。

•第一步将SQL转换成抽象语法树AST。这一步一般都有第三方工具库可以完成,比如antlr。
•第二步对AST进行语义分析,比如表是否存在,字段是否存在,SQL语义是否有误(比如select中被判定为聚合的字段在group by中有没有出现)。
•第三步生成逻辑执行计划,这是一个由逻辑操作符组成的DAG。比如对于Hive来说扫表会产生TableScanOperator,聚合会产生GroupByOperator。对于类MPP系统来说,情况稍微有点不同。逻辑操作符的种类还是差不多,但是会先生成单机版本,然后生成多机版本。多机版本主要是把aggregate,join,还有top n这几个操作并行化,比如aggregate会分成类似MR那样的本地aggregate,shuffle和全局aggregate三步。
•第四步做逻辑执行计划做优化。
•第五步把逻辑执行计划转换成可以在机器上运行的物理计划。

四、优化器

关于执行计划的优化,虽然不一定是整个编译流程中最难的部分,但却是最有看点的部分,而且目前还在不断发展中。Spark系之所以放弃Shark另起炉灶做Spark SQL,很大一部分原因是想自己做优化策略,避免受Hive的限制。早期在Hive中只有一些简单的规则优化,比如谓词下推(把过滤条件尽可能的放在table scan之后就完成),操作合并(连续的filter用and合并成一个operator,连续的projection也可以合并)。后来逐渐增加了一些略复杂的规则,比如相同key的join + group by合并为1个MR,还有star schema join。

但是,基于规则的优化(RBO)不能解决所有问题。在关系数据库中早有另一种优化方式,也就是基于代价的优化CBO。CBO通过收集表的数据信息(比如字段的基数,数据分布直方图等等)来对一些问题作出解答,其中最主要的问题就是确定多表join的顺序。CBO通过搜索join顺序的所有解空间(表太多的情况下可以用有限深度的贪婪算法),并且算出对应的代价,可以找到最好的顺序。这些都已经在关系数据库中得到了实践。

五、存储格式

对于分析类型的workload来说,最好的存储格式自然是列存储,这已经在关系数据库时代得到了证明。目前hadoop生态中有两大列存储格式,一个是由Hortonworks和Microsoft开发的ORCFile,另一个是由Cloudera和Twitter开发的Parquet。

ORCFile顾名思义,是在RCFile的基础之上改造的。RCFile虽然号称列存储,但是只是“按列存储”而已,将数据先划分成row group,然后row group内部按照列进行存储。

ORCFile已经弥补了这些特性,包括:

•块过滤与块统计:每一列按照固定行数或大小进一步切分,对于切分出来的每一个数据单元,预先计算好这些单元的min/max/sum/count/null值,min/max用于在过滤数据的时候直接跳过数据单元,而所有这些统计值则可以在做聚合操作的时候直接采用,而不必解开这个数据单元做进一步的计算。
•更高效的编码方式:RCFile中没有标注每一列的类型,事实上当知道数据类型时,可以采取特定的编码方式,本身就能很大程度上进行数据的压缩。常见的针对列存储的编码方式有RLE(大量重复数据),字典(字符串),位图(数字且基数不大),级差(排序过的数据,比如日志中用户访问时间)等等。
Parquet的设计原理跟ORC类似,不过它有两个特点:

•通用性:相比ORCFile专门给Hive使用而言,Parquet不仅仅是给Impala使用,还可以给其他查询工具使用,如Hive、Pig,进一步还能对接avro/thrift/pb等序列化格式。
•基于Dremel思想的嵌套格式存储:关系数据库设计模式中反对存储复杂格式(违反第一范式),但是现在的大数据计算不仅出现了这种需求(半结构化数据),也能够高效的实现存储和查询效率,在语法上也有相应的支持(各种UDF,Hive的lateral view等)。Google Dremel就在实现层面做出了范例,Parquet则完全仿照了Dremel。

多数据源查询:Presto支持从mysql,cassandra,甚至kafka中去读取数据,这就大大减少了数据整合时间,不需要放到HDFS里才能查询。Impala和Hive也支持查询hbase。

近似查询:count distinct(基数估计)一直是sql性能杀手之一,如果能接受一定误差的话可以采用近似算法。Impala中已经实现了近似算法(ndv),Presto则是请blinkDB合作完成。两者都是采用了HyperLogLog Counting。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容