DL4J中文文档/Keras模型导入/函数模型

导入Keras函数模型入门

假设你使用Keras的函数API开始定义一个简单的MLP:

from keras.models import Model
from keras.layers import Dense, Input

inputs = Input(shape=(100,))
x = Dense(64, activation='relu')(inputs)
predictions = Dense(10, activation='softmax')(x)
model = Model(inputs=inputs, outputs=predictions)
model.compile(loss='categorical_crossentropy',optimizer='sgd', metrics=['accuracy'])

image.gif

在Keras,有几种保存模型的方法。你可以将整个模型(模型定义、权重和训练配置)存储为HDF5文件,仅存储模型配置(作为JSON或YAML文件)或仅存储权重(作为HDF5文件)。以下是你如何做每一件事:

model.save('full_model.h5')  # save everything in HDF5 format

model_json = model.to_json()  # save just the config. replace with "to_yaml" for YAML serialization
with open("model_config.json", "w") as f:
    f.write(model_json)

model.save_weights('model_weights.h5') # save just the weights.

image.gif

如果你决定保存完整的模型,那么你将能够访问模型的训练配置,否则你将不访问。因此,如果你想在导入之后在DL4J中进一步训练模型,请记住这一点,并使用model.save(...)来持久化你的模型。

载加你的Keras模型

让我们从推荐的方法开始,将完整模型加载回DL4J(我们假设它在类路径上):

String fullModel = new ClassPathResource("full_model.h5").getFile().getPath();
ComputationGraph model = KerasModelImport.importKerasModelAndWeights(fullModel);

image.gif

万一你没有编译你的Keras模型,它就不会有一个训练配置。在这种情况下,你需要显式地告诉模型导入忽略训练配置,方法是将enforceTrainingConfig标志设置为false,如下所示:

ComputationGraph model = KerasModelImport.importKerasModelAndWeights(fullModel, false);

image.gif

若要仅从JSON加载模型配置,请按如下使用KerasModelImport

String modelJson = new ClassPathResource("model_config.json").getFile().getPath();
ComputationGraphConfiguration modelConfig = KerasModelImport.importKerasModelConfiguration(modelJson)

image.gif

如果另外你还想加载模型权重与配置,那么以下是你要做的:

String modelWeights = new ClassPathResource("model_weights.h5").getFile().getPath();
MultiLayerNetwork network = KerasModelImport.importKerasModelAndWeights(modelJson, modelWeights)

image.gif

在后面两种情况下,将不读取训练配置。


KerasModel

[源码]

从Keras(函数API)模型或序列模型配置构建计算图。

KerasModel

public KerasModel(KerasModelBuilder modelBuilder)
            throws UnsupportedKerasConfigurationException, IOException, InvalidKerasConfigurationException 

image.gif

(建议)(函数API)模型的构建器模式构造器。

  • 参数 modelBuilder 构建器对象
  • 抛出 IOException IO 异常
  • 抛出 InvalidKerasConfigurationException 无效的 Keras 配置
  • 抛出 UnsupportedKerasConfigurationException 不支持的 Keras 配置

getComputationGraphConfiguration

public ComputationGraphConfiguration getComputationGraphConfiguration()
            throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException 

image.gif

(不推荐)来自模型配置(JSON或YAML)、训练配置(JSON)、权重和“训练模式”布尔指示符的(函数 API)模型的构造器。当内置在训练模式时,某些不支持的配置(例如,未知的正则化器)将抛出异常。当强制TrainingConfig= false时,这些将生成警告,但将被忽略。

  • 参数 modelJson 模型配置JSON 字符串
  • 参数 modelYaml 模型配置 YAML 字符串
  • 参数 enforceTrainingConfig 是否实施训练相关配置
  • 抛出 IOException IO 异常
  • 抛出 InvalidKerasConfigurationException 无效的 Keras 配置
  • 抛出 UnsupportedKerasConfigurationException 不支持的 Keras 配置

getComputationGraph

public ComputationGraph getComputationGraph()
            throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException 

image.gif

从这个Keras模型配置构建计算图并导入权重。

  • 返回 ComputationGraph

getComputationGraph

public ComputationGraph getComputationGraph(boolean importWeights)
            throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException 

image.gif

从这个Keras模型配置构建计算图并(可选的)导入权重。

  • 参数 importWeights 是否导入权重
  • 返回 ComputationGraph

翻译:风一样的男子

image

如果您觉得我的文章给了您帮助,请为我买一杯饮料吧!以下是我的支付宝,意思一下我将非常感激!

image
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容

  • 这次回去,我发现父亲老了很多。 六十出头的年纪,在这个全民驻颜逆生长的时代,其实算不得老。他的头发却快掉光了。走几...
    暗夜之翼阅读 245评论 0 0
  • 1. S型增长。当一项新技术出现的时候,它不会立即被市场接受。但是随着使用人数的增多,终端用户之间互相交换信息的选...
    安妮李斯特阅读 177评论 0 0
  • 这位英雌没有天命 她爱盔甲 爱瑜伽 筋骨舒展 她是晨练战士 河畔刷牙的英雄 是她年轻的衰老公 “宁静喜乐 来自运动...
    陈果_周绿阅读 183评论 0 2