面试官:谈关于缓存穿透+击穿+雪崩,热点数据失效问题的解决方案

1.我们使用缓存时的业务流程大概为:

当我们查询一条数据时,先去查询缓存,如果缓存有就直接返回,如果没有就去查询数据库,然后返回。这种情况下就可能出现下面的一些现象。

2.缓存穿透

2.1什么是缓存穿透

缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞。

2.2缓存穿透带来的问题

试想一下,如果有黑客对你的系统进行攻击,拿一个不存在的id去查询数据,会产生大量的请求到你的数据库去查询,可能会导致你的数据库由于压力过大而宕掉。

2.3解决的办法

2.3.1缓存空值

之所以会发生穿透,就是因为缓存中没有储存这些空数据的key。从而导致每次查询都到数据库去了。

那么我们就可以为这些key对应的值设置为null丢到缓存里面去。后面出现查询这个key的请求的时候直接返回null。

这样就不用再到数据库中去走一圈了,但是别忘了设置过期时间。

缓存空对象会有两个问题:

第一,空值做了缓存,意味着缓存层中存了更多的键,需要更多的内存空间 ( 如果是攻击,问题更严重 ),比较有效的方法是针对这类数据设置一个较短的过期时间,让其自动剔除。

第二,缓存层和存储层的数据会有一段时间窗口的不一致,可能会对业务有一定影响。例如过期时间设置为 5分钟,如果此时存储层添加了这个数据,那此段时间就会出现缓存层和存储层数据的不一致,此时可以利用消息系统或者其他方式清除掉缓存层中的空对象。

2.3.2用布隆过滤器BloomFilter

BloomFilter类似于一个hbase set用来判断某个元素(key)是否存在于某个集合中。

这种方式在大数据场景应用比较多,比如Hbase中使用它去判断数据是否在磁盘上。还有在爬虫场景判断url是否已经被爬取过。

这种方案可以加在第一种方案中,在缓存之前加一层BloomFilter,在查询的时候先去BloomFilter去查询key是否存在,如果不存在就直接返回,存在再去查缓存-------->差数据库。

流程图如下:

2.4如何选择

针对于一些恶意攻击,攻击带来大量key是不存在的,那么我们采用第一种方案就会缓存大量不存在的数据。此时我们采用第一种方案就不合适了,我们完全可以先使用第二种方案过滤掉这些key。

针对这些key异常多,请求多,重复率比较低的数据,我们就没有必要进行缓存,使用第二种方案直接过滤掉。

而对于空数据的key有限的,重复率比较高的,我们则可以采用第一种方式进行缓存。

3.缓存击穿

3.1什么是缓存击穿

缓存击穿是我们使用缓存可能遇到的第二个问题。

在平时高并发的系统中,大量的请求同时查询一个key时,此时这个key正好失效了,就会导致大量的请求都打到数据库上面去,这种现象我们称为缓存击穿。

3.2会带来什么问题

会造成某一时刻数据请求量过大,压力剧增。

3.3如何解决

上面现象是多个线程同时去查询数据库的这一条数据,那么我们可以在第一个查询数据的请求上使用一个互斥锁来锁住它。(如果是单机,可以用synchronized或者lock来处理,如果是分布式环境可以用分布式锁就可以了(分布式锁,可以用memcache的add, redis的setnx, zookeeper的添加节点操作))

其他线程走到这一步拿不到锁就等着,等待第一个线程查询到了数据,然后做缓存。后面的线程进来发现已经有了缓存,就直接走缓存。

4.缓存雪崩

4.1什么是缓存雪崩

缓存雪崩的情况是指:当某一时刻发生大规模的缓存失效的情况,比如你的缓存服务宕机了,会有大量的请求进来直接打到数据库上面,结果就是数据库挂掉。

4.2解决办法

4.2.1雪崩前:使用集群缓存,保证缓存服务的高可用

这种方案就是在发生雪崩前对缓存集群,实现高可用,如果是使用Redis,可以使用(主从 + 哨兵),Redis Cluster来避免Redis全盘崩溃的情况。

4.2.2雪崩中:ehcache本地缓存 + Hystrix限流 & 降级,避免MySQl被打死

使用ehcache本地缓存的目的也是考虑Redis Cluster完全不可用的时候,ehcache本地缓存还能够支撑一阵。

使用Hystrix进行限流 & 降级,比如一秒来了5000个请求,我们可以设置假设一秒只能有2000个请求可以通过这个组件,那么其他剩余的3000请求就会走限流逻辑。

然后去调用我们自己开发的降级组件(降级),比如设置的一些默认值等等之类的。以此来保护最后的MySQl不会被大量的请求打死。

4.2.3雪崩后:开启Redis持久化,尽快恢复缓存集群。

5.解决热点数据集中失效问题

我们在设置缓存的时候,一般会给缓存设置一个失效的时间,过了这个时间,缓存就失效了。

对于一些热点数据来说,当缓存失效后会存在大量的请求到数据库上来,从而可能导致数据库崩溃的情况。

5.1解决办法

5.1.1设置不同的失效时间

为了避免这些热点数据集体失效,那么我们在设置缓存过期时间的时侯,让他们失效的时间错开。比如我们可以在原有的失效时间基础上增加一个随机值。

5.1.2互斥锁

结合上面的击穿情况,在第一个请求去查询数据库的时候对它加一个互斥锁,其余的查询请求都会被阻塞住,直到锁被释放,从而保护数据库。

但是也是由于它会阻塞其他线程,此时系统的吞吐量会下降。需要结合实际业务去考虑。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351