无标题文章

Lab 1 Homework 1.4 1.5

Based on the knowledge of discrete system properties, we analyzed several systems and proved our predictions with MATLAB.

1.4(a) The system y[n] = sin((π/2)x[n]) is not linear. Use the signals x1[n] =δ[n] and x2[n] = 2δ[n] to demonstrate how the system violates linearity.
MATLAB code
 %1.4 problem (a)
n = [-3 : 3];
x1 = [0 0 0 1 0 0 0];
% let x1 be an unit impulse signal
x2 = 2*x1;
% use x2 to testify the system
y1 = sin((pi/2)*x1);
y2 = sin((pi/2)*x2);

% plot x1 x2 y1 and y2
subplot(4,1,1);
stem(n,x1)
title('x1[n]');

subplot(4,1,2);
stem(n,y1)
title('y1[n]');

subplot(4,1,3);
stem(n,x2)
title('x2[n]');

subplot(4,1,4);
stem(n,y2)
title('y2[n]'); 
Result
1.4a.png

Observe the second and the forth image. If the system is linear, then for x2[n] = 2x1[n], y2[n] should be 2y1[n], however, the result doesn't match the assumption.

1.4(b) The system y[n] = x[n] + x[n+1] is not causal. Use x[n] = u[n] to demonstrate this.
MATLAB code
% 1.4 problem(b)
n1 = [-5:9];
x = [zeros(1,5) ones(1,10)];
subplot(3,1,1);
stem(n1,x)
title('x[n]')
x1 = [zeros(1,4) ones(1,11)];
subplot(3,1,2);
stem(n1,x1) 
title('x[n+1]')
y = [x] + [x1];
subplot(3,1,3);
stem(n1,y)
title('y[n]')
Result
1.4b.png

For example, for y[-1]=x[-1]+x[0], the system requires future data x[0], so it is not causal.

1.4(c) Prove the system y[n] = log(x[n]) is not stable
MATLAB code
%1.4 problem(c)
n = [0:50];
x = 2*sin(n);
y = log(x);
subplot(2,1,1);
stem(n,x)
subplot(2,1,2);
stem(n,y)
Result
1.4c.png

The upper one is x[n] = sin[n] which is a bounded signal, while the lower one is the output of this signal by the system, we can tell the output is not bounded. So the system is not stable.

1.4(d) Prove the system in part (a) is not invertible.
MATLAB code
%1.4 problem(d)
n = [1:10];
x = [1 2 3 4 5 6 7 8 9 0];
y = sin((pi/2)*x);
stem(n,y)
Result
1.4d.png

When the input n includes 2 4 6 ... and 2k, the system gives the same output: zero. So the system is not inversible.

1.4(e) Analyze y[n] = x^3[n] and state whether it is linear, time invariant, causal, stable and invertible.
The conclusion

for y[n] = x^3[n] , it is not linear, but is time invariant, causal, stable and invertible.

MATLAB code
n = [-2 : 2];
x1 = [-1 0 1 0 1]; x2 = 2*x1;
y1 = x1.^3; y2 = x2.^3;
subplot(4,1,1); stem(n,x1)
title('x1[n]');
subplot(4,1,2); stem(n,y1)
title('y1[n]');
subplot(4,1,3); stem(n,x2)
title('x2[n]');
subplot(4,1,4); stem(n,y2)
title('y2[n]');
Result
1.4e_linear.png
1.5(a)
1.5 (a).png
1.5(b)
1.5(b)new.png
1.5(c)
1.5(c)a.png
1.5(c)b.png
1.5(d)
1.5(d) alpha.png
1.5(d).png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容