分布式系统的核心:共识问题

写在前面:混乱的“一致性”问题

Consensus != Consistency

受翻译影响,网上很多讨论 paxos 或 raft 的博客使用“分布式一致性协议”或者“分布式一致性算法”这样的字眼,虽然在汉语中“达成共识”和“达成一致”是一个意思,但是必须要说明在这里讨论的是 consensus 问题,使用“共识”来表达更清晰一些。而 CAP 定理中的 C 和数据库 ACID 的 C 才是真正的“一致性”—— consistency 问题,尽管这两个 C 讨论的也不是同一个问题,但在这里不展开。

为了规范和清晰表达,在讨论 consensus 问题的时候统一使用“共识”一词。

时间线

注:在早些的文献中,共识(consensus)也叫做协商(agreement)。

共识问题

那么共识问题到底是什么呢?举个生活中的例子,小明和小王出去聚会,小明问:“小王,我们喝点什么吧?”
小王:“喝咖啡怎么样?”
小明:“好啊,那就来杯咖啡。”

在上面的场景中,小王提议喝一杯咖啡,小明表示同意,两人就“喝杯咖啡”这个问题达成共识,并根据这个结果采取行动。这就是生活中的共识。

在分布式系统中,共识就是系统中的多个节点对某个值达成一致。共识问题可以用数学语言来描述:一个分布式系统包含 n 个进程 {0, 1, 2,..., n-1},每个进程都有一个初值,进程之间互相通信,设计一种算法使得尽管出现故障,进程们仍协商出某个不可撤销的最终决定值,且每次执行都满足以下三个性质:

  • 终止性(Termination):所有正确的进程最终都会认同某一个值。
  • 协定性(Agreement):所有正确的进程认同的值都是同一个值。
  • 完整性(Integrity),也称作有效性(Validity):如果正确的进程都提议同一个值,那么所有处于认同状态的正确进程都选择该值。

完整性可以有一些变化,例如,一种较弱的完整性是认定值等于某些正确经常提议的值,而不必是所有进程提议的值。完整性也隐含了,最终被认同的值必定是某个节点提出过的。

为什么要达成共识?

我们首先介绍分布式系统达成共识的动机。

前文中,我们已经了解到分布式系统的几个主要难题:

  • 网络问题
  • 时钟问题
  • 节点故障问题

第一篇提到共识问题的文献[1] 来自于 lamport 的 "Time, Clocks and the Ordering of Events in a Distributed System[2]",尽管它并没有明确的提出共识(consensus)或者协商(agreement)的概念。论文阐述了在分布式系统中,你无法判断事件 A 是否发生在事件 B 之前,除非 A 和 B 存在某种依赖关系。由此还引出了分布式状态机的概念。

在分布式系统中,共识就常常应用在这种多副本状态机(Replicated state machines),状态机在每台节点上都存有副本,这些状态机都有相同的初始状态,每次状态转变、下个状态是什么都由相关进程共同决定,每一台节点的日志的值和顺序都相同。每个状态机在“哪个状态是下一个需要处理的状态”这个问题上达成共识,这就是一个共识问题。

Raft 算法的状态机

最终,这些节点看起来就像一个单独的、高可靠的状态机。Raft 的论文[3]提到,使用状态机我们就能克服上述三个问题:

  • 满足在所有非拜占庭条件下确保安全(不会返回错误结果),包括网络延迟、分区、丢包、重复和重排序。
  • 不依赖于时序。
  • 高可用。只要集群中的大部分节点正常运行,并能够互相通信且可以同客户端通信,这个集群就完全可用。因此,拥有5个节点的集群可以容忍其中的2个节点失败。假使通过停掉某些节点使其失败,稍后它们会从持久化存储的状态进行恢复,并重新加入到集群中。

不仅如此,达成共识还可以解决分布式系统中的以下经典问题:

  • 互斥(Mutual exclusion):哪个进程进入临界区访问资源?分布式锁?
  • 选主(Leader election):在单主复制的数据库,需要所有节点就哪个节点是领导者达成共识。如果一些由于网络故障而无法与其他节点通信,可能会产生两个领导者,它们都会接受写入,数据就可能会产生分歧,从而导致数据不一致或丢失。
  • 原子提交(Atomic commit):跨多节点或跨多分区事务的数据库中,一个事务可能在某些节点上失败,但在其他节点上成功。如果我们想要维护这种事务的原子性,必须让所有节点对事务的结果达成共识:要么全部提交,要么全部中止/回滚。

总而言之,在共识的帮助下,分布式系统就可以像单一节点一样工作——所以共识问题是分布式系统最基本的问题。

系统模型

在考虑如何达成共识之前,需要考虑分布式系统中有哪些可供选择的计算模型。主要有以下几个方面:

网络模型:

  • 同步(Synchronous):响应时间是在一个固定且已知的有限范围内。
  • 异步(Asynchronous):响应时间是无限的。

故障类型:

  • Fail-stop failures:节点突然宕机并停止响应其它节点。
  • Byzantine failures:源自“拜占庭将军问题” ,是指节点响应的数据会产生无法预料的结果,可能会互相矛盾或完全没有意义,这个节点甚至是在“说谎”,例如一个被黑客入侵的节点。

消息模型:

  • 口头消息(oral messages):消息被转述的时候是可能被篡改的。
  • 签名消息(signed messages):消息被发出来之后是无法伪造的,只要被篡改就会被发现。

作为最常见的,我们将分别讨论在同步系统和异步系统中的共识。在同步通信系统中达成共识是可行的(下文将会谈论这点),但是,在实际的分布式系统中同步通信是不切实际的,我们不知道消息是故障了还是延迟了。异步与同步相比是一种更通用的情况。一个适用于异步系统的算法,也能被用于同步系统,但是反过来并不成立。

异步与同步相比是一种更通用的情况

让我们先从异步的情况开始。

异步系统中的共识

FLP 不可能(FLP Impossibility)

早在 1985 年,Fischer、Lynch 和 Paterson (FLP)在 "Impossibility of Distributed Consensus with One Faulty Process"[4] 证明了:在一个异步系统中,即使只有一个进程出现了故障,也没有算法能保证达成共识。

FLP 不可能(FLP Impossibility

简单来说,因为在一个异步系统中,进程可以随时发出响应,所以没有办法分辨一个进程是速度很慢还是已经崩溃,这不满足终止性(Termination)。详细的证明已经超出本文范围,不在细述[5]

此时,人们意识到一个分布式共识算法需要具有的两个属性:安全性(safety)活性(liveness)。安全性意味着所有正确的进程都认同同一个值,活性意味着分布式系统最终会认同某一个值。每个共识算法要么牺牲掉一个属性,要么放宽对网络异步的假设。

虽然 FLP 不可能定理听着让人望而生畏,但也给后来的人们提供了研究的思路——不再尝试寻找异步通信系统中共识问题完全正确的解法。FLP 不可能是指无法确保达成共识,并不是说如果有一个进程出错,就永远无法达成共识。这种不可能的结果来自于算法流程中最坏的结果

  • 一个完全异步的系统
  • 发生了故障
  • 最后,不可能有一个确定的共识算法。

针对这些最坏的情况,可以找到一些方法,尽可能去绕过 FLP 不可能,能满足大部分情况下都能达成共识。《分布式系统:概念与设计》提到一般有三种办法:

  1. 故障屏蔽(Fault masking)
  2. 使用故障检测器(Failure detectors)
  3. 使用随机性算法(Non-Determinism)

1、故障屏蔽(Fault masking)

既然异步系统中无法证明能够达成共识,我们可以将异步系统转换为同步系统,故障屏蔽就是第一种方法。故障屏蔽假设故障的进程最终会恢复,并找到一种重新加入分布式系统的方式。如果没有收到来自某个进程的消息,就一直等待直到收到预期的消息。

例如,两阶段提交事务使用持久存储,能够从崩溃中恢复。如果一个进程崩溃,它会被重启(自动重启或由管理员重启)。进程在程序的关键点的持久存储中保留了足够多的信息,以便在崩溃和重启时能够利用这些数据继续工作。换句话说故障程序也能够像正确的进程一样工作,只是它有时候需要很长时间来执行一个恢复处理。

故障屏蔽被应用在各种系统设计中。

2、使用故障检测器(Failure detectors)

将异步系统转换为同步系统的第二个办法就是引入故障检测器,进程可以认为在超过一定时间没有响应的进程已经故障。一种很常见的故障检测器的实现:超时(timeout)。

但是,这种办法要求故障检测器是精确的。如果故障器不精确的话,系统可能放弃一个正常的进程;如果超时时间设定得很长,进程就需要等待(并且不能执行任何工作)较长的时间才能得出出错的结论。这个方法甚至有可能导致网络分区。

解决办法是使用“不完美”的故障检测器。Chanadra 和 Toueg 在 "The weakest failure detector for solving consensus[6]" 中分析了一个故障检测器必须拥有的两个属性:

  • 完全性(Completeness):每一个故障的进程都会被每一个正确的进程怀疑。
  • 精确性(Accuracy):正确的进程没有被怀疑。

同时,他们还证明了,即使是使用不可靠的故障检测器,只要通信可靠,崩溃的进程不超过 N/2,那么共识问题是可以解决的。我们不需要实现 Strong Completeness 和 Strong Accuracy,只需要一个最终弱故障检测器(eventually weakly failure detector),该检测器具有如下性质:

  • 最终弱完全性(eventually weakly complete):每一个错误进程最终常常被一些正确进程怀疑;
  • 最终弱精确性(eventually weakly accurate):经过某个时刻后,至少一个正确的进程从来没有被其它正确进程怀疑。
故障检测器(Failure detectors)

该论文还证明了,在异步系统中,我们不能只依靠消息来实现一个最终弱故障检测器。但是,实际的故障检测器能够根据观察到的响应时间调节它的超时值。如果一个进程或者一个到检测器的连接很慢,那么超时值就会增加,那么错误地怀疑一个进程的情况将变得很少。从实用目的来看,这样的弱故障检测器与理想的最终弱故障检测器十分接近。

3、使用随机性算法(Non-Determinism)

这种解决不可能性的技术是引入一个随机算法,随机算法的输出不仅取决于外部的输入,还取决于执行过程中的随机概率。因此,给定两个完全相同的输入,该算法可能会输出两个不同的值。随机性算法使得“敌人”不能有效地阻碍达成共识。

和传统选出领导、节点再协作的模式不同,像区块链这类共识是基于哪个节点最快计算出难题来达成的。区块链中每一个新区块都由本轮最快计算出数学难题的节点添加,整个分布式网络持续不断地建设这条有时间戳的区块链,而承载了最多计算量的区块链正是达成了共识的主链(即累积计算难度最大)。

比特币使用了 PoW(Proof of Work)来维持共识,一些其它加密货币(如 DASH、NEO)使用 PoS(Proof of Stake),还有一些(如 Ripple)使用分布式账本(ledger)。

但是,这些随机性算法都无法严格满足安全性(safety)。攻击者可以囤积巨量算力,从而控制或影响网络的大量正常节点,例如控制 50% 以上网络算力即可以对 PoW 发起女巫攻击(Sybil Attack)。只不过前提是攻击者需要付出一大笔资金来囤积算力,实际中这种风险性很低,如果有这么强的算力还不如直接挖矿赚取收益。

同步系统中的共识

上述的方法 1 和 2,都想办法让系统比较“同步”。我们熟知的 Paxos 在异步系统中,由于活锁的存在,并没有完全解决共识问题(liveness不满足)。但 Paxos 被广泛应用在各种分布式系统中,就是因为在达成共识之前,系统并没有那么“异步”,还是有极大概率达成共识的。

Dolev 和 Strong 在 "Authenticated Algorithms for Byzantine Agreement[7]" 证明了:同步系统中,如果 N 个进程中最多有 f 个会出现崩溃故障,那么经过 f + 1 轮消息传递后即可达成共识。

Fischer 和 Lynch 的 "A lower bound for the time to assure interactive consistency[8]" 证明了,该结论同样适用于拜占庭故障

基于此,大多数实际应用都依赖于同步系统或部分同步系统的假设。

同步系统中的拜占庭将军问题

Leslie Lamport、Robert Shostak 和 Marshall Pease 在 "拜占庭将军问题(The Byzantine General’s Problem)[9]" 论文中讨论了 3 个进程互相发送未签名(口头的)的消息,并证明了只要有一个进程出现故障,就无法满足拜占庭将军的条件。但如果使用签名的消息,那么 3 个将军中有一个出现故障,也能实现拜占庭共识。

Pease 将这种情况推广到了 N 个进程,也就是在一个有 f 个拜占庭故障节点的系统中,必须总共至少有 3f + 1 个节点才能够达成共识。即 N >= 3f + 1。

虽然同步系统下拜占庭将军问题的确存在解,但是代价很高,需要 O(N^f+1 ) 的信息交换量,只有在那些安全威胁很严重的地方使用(例如:航天工业)。

PBFT 算法

PBFT(Practical Byzantine Fault Tolerance) [10] 算法顾名思义是一种实用的拜占庭容错算法,由 Miguel Castro 和 Barbara Liskov 发表于 1999 年。

算法的主要细节不再展开。PBFT 也是通过使用同步假设保证活性来绕过 FLP 不可能。PBFT 算法容错数量同样也是 N >= 3f + 1,但只需要 O(n^2 ) 信息交换量,即每台计算机都需要与网络中其他所有计算机通讯。

虽然 PBFT 已经有了一定的改进,但在大量参与者的场景还是不够实用,不过在拜占庭容错上已经作出很重要的突破,一些重要的思想也被后面的共识算法所借鉴。

结语

本文参考了很多资料文献,对“共识问题”的研究历史做一些基础概述,希望能对你带来一点帮助。

本文提到的论文,很多直接谈论结果,忽略了其中的数学证明,一是本文只是提纲挈领的讨论共识问题,建立一个知识框架,后续方便往里面填充内容;二是考虑到大部分读者对数学证明过程并不敢兴趣,也不想本文变成一本书那么长。本文也遗漏许多重要算法,后续如有必要会继续补充。

限于本人能力,恳请读者们对本文存在的错误和不足之处,欢迎留言或私信告诉我。

下篇我们将会讨论 Paxos 算法。欢迎关注我的公众号:多颗糖。

Reference


  1. Mark Mc Keown: "A brief history of Consensus, 2PC and Transaction"

  2. Lamport, Leslie (July 1978). "Time, Clocks and the Ordering of Events in a Distributed System". Communications of the ACM. 21 (7): 558–565.

  3. Ongaro, D., and Ousterhout, J. "In Search of an Understandable Consensus Algorithm". In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference (USA, 2014), USENIX ATC’14, USENIX Association, pp. 305–320.

  4. Fischer, M. J.; Lynch, N. A.; Paterson, M. S. (1985). "Impossibility of Distributed Consensus with One Faulty Process" . Journal of the ACM. 32 (2): 374–382.

  5. A Brief Tour of FLP Impossibility

  6. Chandra, T. D., Hadzilacos, V. & Toueg, S. (1992), "The weakest failure detector for solving consensus", in `Proc. of the 11th Annual ACM Symposium on Principles of Distributed Computing’.

  7. Dolev, D.; Strong, H.R. (1983). "Authenticated Algorithms for Byzantine Agreement". SIAM Journal on Computing. 12 (4).

  8. Michael J. Fischer, Nancy A. Lynch: "A lower bound for the time to assure interactive consistency". Inf. Process. Lett. 14(4): 183-186(1982)

  9. Lamport, L.; Shostak, R.; Pease, M. (1982). "The Byzantine Generals Problem". ACM Transactions on Programming Languages and Systems.

  10. Castro, Miguel; Liskov, Barbara (1999). Practical Byzantine Fault Tolerance. OSDI.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351