Web crawler with Python - 04.另一种抓取方式(转)

作者:xlzd

链接:https://zhuanlan.zhihu.com/p/20430122

来源:知乎

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

好了,到上一篇博客,我们已经能够顺利从网站上抓取一些简单的数据,并将其存储到文件中。但是在抓取网页的时候,有时候会发现HTML中没有我们需要的数据,这时候如何是好呢?

-------------------------------------

我们的目的是抓取拉勾网Python分类下全国到目前为止展示出来的所有招聘信息,首先在浏览器点击进去看看吧。如果你足够小心或者网速比较慢,那么你会发现,在点击Python分类之后跳到的新页面上,招聘信息出现时间是晚于页面框架出现时间的。到这里,我们几乎可以肯定,招聘信息并不在页面HTML源码中,我们可以通过按下"command+option+u"(在Windows和Linux上的快捷键是"ctrl+u")来查看网页源码,果然在源码中没有出现页面展示的招聘信息。

到这一步,我看到的大多数教程都会教,使用什么什么库,如何如何模拟浏览器环境,通过怎样怎样的方式完成网页的渲染,然后得到里面的信息......永远记住,对于爬虫程序,模拟浏览器往往是下下策,只有实在没有办法了,才去考虑模拟浏览器环境,因为那样的内存开销实在是很大,而且效率非常低。

那么我们怎么处理呢?经验是,这样的情况,大多是是浏览器会在请求和解析HTML之后,根据js的“指示”再发送一次请求,得到页面展示的内容,然后通过js渲染之后展示到界面。好消息是,这样的请求往往得到的内容是json格式的,所以我们非但不会加重爬虫的任务,反而可能会省去解析HTML的功夫。

那个,继续打开Chrome的开发者工具,当我们点击“下一页”之后,浏览器发送了如下请求:

注意观察"positionAjax.json"这个请求,它的Type是"xhr",全称叫做"XMLHttpRequest",XMLHttpRequest对象可以在不向服务器提交整个页面的情况下,实现局部更新网页。那么,现在它的可能性最大了,我们单击它之后好好观察观察吧:

点击之后我们在右下角发现了如上详情,其中几个tab的内容表示:

Headers:请求和响应的详细信息

Preview:响应体格式化之后的显示

Response:响应体原始内容

Cookies:Cookies

Timing:时间开销

通过对内容的观察,返回的确实是一个json字符串,内容包括本页每一个招聘信息,到这里至少我们已经清楚了,确实不需要解析HTML就可以拿到拉钩招聘的信息了。那么,请求该如何模拟呢?我们切换到Headers这一栏,留意三个地方:

上面的截图展示了这次请求的请求方式、请求地址等信息。

上面的截图展示了这次请求的请求头,一般来讲,其中我们需要关注的是Cookie / Host / Origin / Referer / User-Agent / X-Requested-With等参数。

上面这张截图展示了这次请求的提交数据,根据观察,kd表示我们查询的关键字,pn表示当前页码。

那么,我们的爬虫需要做的事情,就是按照页码不断向这个接口发送请求,并解析其中的json内容,将我们需要的值存储下来就好了。这里有两个问题:什么时候结束,以及如何的到json中有价值的内容。

我们回过头重新观察一下返回的json,格式化之后的层级关系如下:

很容易发现,content下的hasNextPage即为是否存在下一页,而content下的result是一个list,其中的每项则是一条招聘信息。在Python中,json字符串到对象的映射可以通过json这个库完成:

importjsonjson_obj=json.loads("{'key': 'value'}")# 字符串到对象json_str=json.dumps(json_obj)# 对象到字符串

json字符串的"[ ]"映射到Python的类型是list,"{ }"映射到Python则是dict。到这里,分析过程已经完全结束,可以愉快的写代码啦。具体代码这里不再给出,希望你可以自己独立完成,如果在编写过程中存在问题,可以联系我获取帮助。

小结

这篇博客介绍了有些数据不在HTML源码中的情况下的抓取方法,适用于一部分情况。对于数据的存储暂时还是在使用文件。到下一篇,我们将使用MongoDB存储数据,所以在这之间,希望你可以先在本机安装并配置好MongoDB。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容