169.多数元素

解题思路

解法一:排序法

如果将数组 nums 中的所有元素按照单调递增或单调递减的顺序排序,那么下标为 ⌊n/2⌋ 的元素(下标从 0 开始)一定是众数。
复杂度分析:
时间复杂度:O(nlogn)。将数组排序的时间复杂度为 O(nlogn)。
空间复杂度:O(logn)。如果使用语言自带的排序算法,需要使用 O(logn) 的栈空间。如果自己编写堆排序,则只需要使用 O(1)的额外空间。

解法二:Boyer-Moore 投票法

我们维护一个候选众数 candidate 和它出现的次数 count。初始时 candidate 可以为任意值,count 为 0。然后遍历数组 nums 中的所有元素,对于每个元素 x,在判断 x 之前,如果 count 的值为 0,我们先将 x 的值赋予 candidate,随后我们判断 x:
如果 x 与 candidate 相等,那么计数器 count 的值增加 1;
如果 x 与 candidate 不等,那么计数器 count 的值减少 1。
在遍历完成后,candidate 即为整个数组的众数。

复杂度分析:
时间复杂度:O(n)。Boyer-Moore 算法只对数组进行了一次遍历。
空间复杂度:O(1)。Boyer-Moore 算法只需要常数级别的额外空间。

解法三:哈希字典法

遍历数组,如果在字典中,则对应的值加1,否则将其加入字典。最后遍历一遍字典,返回值大于n/2的键。

代码

解法一:排序法

class Solution:
    def majorityElement(self, nums: List[int]) -> int:
        nums.sort()
        return nums[len(nums)//2]

解法二:投票法

class Solution:
    def majorityElement(self, nums: List[int]) -> int:
        count = 0
        candidate = None
        for num in nums:
            if count == 0:
                candidate = num
            count += (1 if candidate == num else -1)
        return candidate

解法三:哈希字典法

class Solution:
    def majorityElement(self, nums: List[int]) -> int:
        n = len(nums)
        dic = {}
        for num in nums:
            if num in dic:
                dic[num] += 1
            else:
                dic[num] = 1
        for i in dic:
            if dic[i] > n/2:
                return i
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 2020/3/15 题目描述 给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于 ⌊...
    icespark阅读 2,118评论 0 0
  • 题目描述: 给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于⌊ n/2 ⌋的元素。...
    小刘一定要努力阅读 1,462评论 0 0
  • 给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。你可以假...
    做梦枯岛醒阅读 2,976评论 2 1
  • 题目描述 给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素...
    1只特立独行的猪阅读 656评论 0 0
  • 首先我们要了解到的是抖音的本质,抖音的本质就是以短视频为展现方式的自媒体。 只有看清本质,才能体验更好,效率更好的...
    醨陌阅读 949评论 0 1