数据治理

为什么需要:

野蛮式增长背后都是烟囱式的数据建设,随之而来,数据存储,数据模型建设(数据冗余,数据孤岛问题非常多),数据质量,使用规范上都会出现一些问题。业务对数据提出了准确性、及时性等要求。

目标:

- 一是控制数据使用成本,主要是计算资源问题,模型冗余问题

- 二是提升查询效率和解决问题效率,包括模型不稳定,标准性差问题,优化数据管理方案

规范数据建设,指标建设,保障数据建模统一性,统一标准 。

- 三是保障数据质量,主要是数据不一致,问题故障频发出现。

- 四是数据安全

方法:

(1)元数据管理

元数据从数据的角度可以分为三类:业务元数据、技术元数据和管理元数据。

业务元数据是从业务的视角去描述数据,让不懂数据的人可以快速读懂数据,例如:表名称、表的血缘关系、表的字段说明、指标的统计口径等多种业务描述;

技术元数据自然就是从技术的角度去描述数据,例如:表的sql、字段长度、字段类型等多种技术描述;

管理元数据是包含数据管理的信息在里面,例如:表的业务属主、表的技术负责人。

元数据的管理通常包含:血缘分析、数据生命周期。

        血缘分析:对元数据的上下游进行分析,我的公司按照数据存储的数据库将血缘分析分为了两类:

                           存在Hadoop平台的血缘分析,可用通过脚本解析出到字段级的上下游关系;

                            建表有主外键的,可通过主外键建立血缘关系。

        - 废弃模型:⽆无下游,且模型⽆无在线作业或作业⽆无调度

        数据生命周期:数据都存在生命周期,当元数据访问量变低,数据价值不存在的时候,可将它下线清除,释放存储空间。

(2)数据模型治理

分库分表,数据字典、核心指标文档的维护

有ods无dwd,包括之前的dwd表重构(ods中间层删除)

报表模型相似性治理(上下链路重合度大,字段来⾃自于相同上游字段的⽐比重较⼤ ,)

日/近30天/近90天 访问量/ 访问人数(pv、uv)、低热度:近120天内⽆无热度,180天以上⽇日均热度等

数据链路的梳理,能够与现有系统保持一致和融合,避免产生信息孤岛,或者带来重复不必要的数据集成、数据转换。

数据一致性

(3)数据质量管理

数据质量的提升通常包含以下几个方面:

1)数据质量评估,提供数据质量评估能力,如数据一致性、完整性、正确性、合规性、及时性等,对数据进行全面检查;

2)数据质量检查,提供可配置化的检查规则,通过脚本定时调度执行;

3)数据质量监控,提供报警规则,根据配置检查规则的阀值,对超出阀值的进行不同程级的告警和通知;

4)问题处理机制,对数据问题按照流程进行处理,规范问题处理机制和步骤,强化问题认证,提高数据质量;

5)根据血缘关系和业务场景锁定高价值数据,进行高安全级别管控,避免数据出错。

起夜率 

(4)数据安全

字段脱敏,数据表权限管理,数据按安全级别分级管理和授权,数据权限工具建设和授权流程制定(安全检查)等

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355