本文参考教程,并加上自己的一些心得体会。所谓的扭曲效果,就是将给定的纹理贴图进行采样,并随着时间进行流动,使得每个点的采样路径不完全一样。为了做到这一点,首先我们需要一张flow map,用来保存每个点的采样方向,然后根据时间偏移:
float2 flowVector = tex2D(_FlowMap, i.uv);
float2 uv = i.uv + flowVector * _Time.y;
fixed4 col = tex2D(_MainTex, uv);
return col;
运行查看,发现随着时间推移,画面越来越细碎,这时我们需要让表现有个周期性,就是画面能够在一个周期回到初始的状态。
我们可以使用frac
函数来对时间进行约束,使得周期控制在1秒:
float2 uv = i.uv + flowVector * frac(_Time.y);
这样画面总会在1s后回到初始的状态,但是会带来新的问题,就是回到初始状态是一个跳变的过程,会让画面闪一下:
为了解决这个问题,我们可以加上淡入淡出的效果来缓解这个过渡:
float progress = frac(_Time.y);
float2 uv = i.uv + flowVector * progress;
float w = 1 - 2 * abs(progress - 0.5);
fixed4 col = tex2D(_MainTex, uv) * w;
通过观察,我们发现这个淡入淡出是整个画面一起的,有些单调,可以让它们的步调稍稍不一致。因为我们的flow map只用了rg两个通道,这里可以再使用a通道来代表每个采样点的步调偏移(其实就是a通道放了一张noise map):
float4 flowSample = tex2D(_FlowMap, i.uv);
float2 flowVector = flowSample.rg * 2 - 1;
float flowNoise = flowSample.a;
float progress = frac(_Time.y + flowNoise);
float2 uv = i.uv + flowVector * progress;
float w = 1 - 2 * abs(progress - 0.5);
fixed4 col = tex2D(_MainTex, uv) * w;
接下来,我们希望把单次扰动的效果进行叠加,同时使用两次扰动,当然两次扰动的步调是不同的,在时间上存在一个相位差。这里我们将其设置为0.5,使得上面w的权重之和为1:
float3 flowUVW(float2 uv, float offset)
{
float4 flowSample = tex2D(_FlowMap, uv);
float2 flowVector = flowSample.rg * 2 - 1;
float flowNoise = flowSample.a;
float progress = frac(_Time.y + flowNoise + offset);
uv = uv + flowVector * progress;
float w = 1 - 2 * abs(progress - 0.5);
return float3(uv, w);
}
fixed4 frag (v2f i) : SV_Target
{
float3 uvwa = flowUVW(i.uv, 0);
float3 uvwb = flowUVW(i.uv, 0.5);
fixed4 cola = tex2D(_MainTex, uvwa.xy) * uvwa.z;
fixed4 colb = tex2D(_MainTex, uvwb.xy) * uvwb.z;
return cola + colb;
}
但这样看上去周期重复的感觉很明显,为了淡化这种表现,我们可以再给uv加上偏移参数,让采样的uv需要过很久的时间才会重复:
uv = uv + float2(_UJump, _VJump) * (_Time.y - progress);
接下来,我们还可以给flow map加上tiling,加上参数控制uv随时间偏移的速度,控制从flow map中采样的方向向量强弱程度:
float progress = frac(_Time.y * _Speed + flowNoise + offset);
uv += flowVector * progress;
uv += float2(_UJump, _VJump) * (_Time.y - progress);
uv *= _Tiling;
另外,我们可以控制初始采样的偏移,使得当w达到峰值时,即采样权重最大时,对应的uv偏移到一个可以控制的位置:
uv += flowVector * (progress + _FlowOffset);
最后,我们为水面加上法线信息,这里使用了derivative map来计算水面的法线和高度信息。derivative map的ag通道保存了高度在两个切线方向上的导数,b通道保存了原始的高度。在此基础上还可以继续调制水面的高度,让其与flow map的方向向量强弱挂钩(流动越强,波浪越大,高度越大)。我们用flow map的b通道来保存这一信息,算出水面的高度:
float flowSpeed = flowSample.b * _FlowStrength;
float finalHeightScale = flowSpeed * _HeightScaleModulated + _HeightScale;
然后,我们的derivative map保存了高度在两个切线方向上的导数,在切线空间,高度对应的实际上是N法线这条轴,两个切线方向向量分别为(1, 0, x),(0, 1, y),那么叉乘即可得到法线为(-x, -y, 1)。
float3 flowNormal(float4 flowSample)
{
float3 normal = flowSample.agb;
normal.xy = -(normal.xy * 2 - 1);
normal.z = 1;
return normal;
}
float3 normala = flowNormal(tex2D(_DerivHeightMap, uvwa.xy)) * uvwa.z * finalHeightScale;
float3 normalb = flowNormal(tex2D(_DerivHeightMap, uvwb.xy)) * uvwb.z * finalHeightScale;
float3 normal = normalize(normala + normalb);
原教程用的surface shader,这里将其转成vert/frag shader,删去了没用的代码,得到最终的效果如下:
完整shader代码如下:
Shader "Custom/DistortionFlowShader"
{
Properties
{
_MainTex ("Texture", 2D) = "white" {}
[NoScaleOffset] _FlowMap ("Flow (RG, A noise)", 2D) = "black" {}
[NoScaleOffset] _DerivHeightMap ("Deriv (AG) Height (B)", 2D) = "black" {}
_Color ("Color", Color) = (1,1,1,1)
_UJump ("U jump per phase", Range(-0.25, 0.25)) = 0.25
_VJump ("V jump per phase", Range(-0.25, 0.25)) = 0.25
_Tiling ("Tiling", Float) = 1
_Speed ("Speed", Float) = 1
_FlowStrength ("Flow Strength", Float) = 1
_FlowOffset ("Flow Offset", Float) = 0
_HeightScale ("Height Scale, Constant", Float) = 0.25
_HeightScaleModulated ("Height Scale, Modulated", Float) = 0.75
_Glossiness ("Smoothness", Range(0,1)) = 0.5
_Metallic ("Metallic", Range(0,1)) = 0.0
}
SubShader
{
Tags { "RenderType"="Opaque" }
LOD 100
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
#include "Lighting.cginc"
#include "UnityPBSLighting.cginc"
#include "AutoLight.cginc"
struct appdata
{
float4 vertex : POSITION;
float3 normal : NORMAL;
float4 tangent : TANGENT;
float2 uv : TEXCOORD0;
};
struct v2f
{
float2 uv : TEXCOORD0;
float4 vertex : SV_POSITION;
float3 normal : NORMAL;
float4 tangent : TANGENT;
float3 viewDir : TEXCOORD1;
half3 sh : TEXCOORD2; // SH
float4 worldPos : TEXCOORD3;
UNITY_SHADOW_COORDS(4)
};
sampler2D _MainTex;
float4 _MainTex_ST;
sampler2D _FlowMap;
sampler2D _DerivHeightMap;
fixed4 _Color;
float _UJump;
float _VJump;
float _Tiling;
float _Speed;
float _FlowStrength;
float _FlowOffset;
float _HeightScale;
float _HeightScaleModulated;
half _Glossiness;
half _Metallic;
float3 flowUVW(float4 flowSample, float2 uv, float offset)
{
float2 flowVector = (flowSample.rg * 2 - 1) * _FlowStrength;
float flowNoise = flowSample.a;
float flowVar = _Time.y * _Speed + flowNoise + offset;
float progress = frac(flowVar);
uv += flowVector * (progress + _FlowOffset);
uv += float2(_UJump, _VJump) * (flowVar - progress);
uv *= _Tiling;
float w = 1 - 2 * abs(progress - 0.5);
return float3(uv, w);
}
float3 flowNormal(float4 flowSample)
{
float3 normal = flowSample.agb;
normal.xy = -(normal.xy * 2 - 1);
normal.z = 1;
return normal;
}
v2f vert (appdata v)
{
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.uv = TRANSFORM_TEX(v.uv, _MainTex);
o.normal = v.normal;
o.tangent = v.tangent;
o.viewDir = WorldSpaceViewDir(v.vertex);
o.worldPos = v.vertex;
return o;
}
fixed4 frag (v2f i) : SV_Target
{
float4 flowSample = tex2D(_FlowMap, i.uv);
float flowSpeed = flowSample.b * _FlowStrength;
float finalHeightScale = flowSpeed * _HeightScaleModulated + _HeightScale;
float3 uvwa = flowUVW(flowSample, i.uv, 0);
float3 uvwb = flowUVW(flowSample, i.uv, 0.5);
fixed4 cola = tex2D(_MainTex, uvwa.xy) * uvwa.z;
fixed4 colb = tex2D(_MainTex, uvwb.xy) * uvwb.z;
float3 normala = flowNormal(tex2D(_DerivHeightMap, uvwa.xy)) * uvwa.z * finalHeightScale;
float3 normalb = flowNormal(tex2D(_DerivHeightMap, uvwb.xy)) * uvwb.z * finalHeightScale;
float3 tangentNormal = normalize(normala + normalb);
fixed4 texColor = (cola + colb) * _Color;
float3 normal = normalize(i.normal);
float4 tangent = normalize(i.tangent);
float3 binormal = cross(normal, tangent) * tangent.w;
float3x3 tangentToLocal = {
tangent.x, binormal.x, normal.x,
tangent.y, binormal.y, normal.y,
tangent.z, binormal.z, normal.z
};
float3 worldNormal = normalize(UnityObjectToWorldNormal(mul(tangentToLocal, tangentNormal)));
fixed4 c = 0;
fixed3 lightDir = normalize(_WorldSpaceLightPos0.xyz);
float3 worldViewDir = normalize(i.viewDir);
UNITY_LIGHT_ATTENUATION(atten, i, i.worldPos)
UnityGI gi;
UNITY_INITIALIZE_OUTPUT(UnityGI, gi);
gi.indirect.diffuse = 0;
gi.indirect.specular = 0;
gi.light.color = _LightColor0.rgb;
gi.light.dir = lightDir;
UnityGIInput giInput;
UNITY_INITIALIZE_OUTPUT(UnityGIInput, giInput);
giInput.light = gi.light;
giInput.worldPos = i.worldPos;
giInput.worldViewDir = worldViewDir;
giInput.atten = atten;
giInput.probeHDR[0] = unity_SpecCube0_HDR;
giInput.probeHDR[1] = unity_SpecCube1_HDR;
#if defined(UNITY_SPECCUBE_BLENDING) || defined(UNITY_SPECCUBE_BOX_PROJECTION)
giInput.boxMin[0] = unity_SpecCube0_BoxMin;
#endif
SurfaceOutputStandard o;
o.Albedo = texColor.rgb;
o.Metallic = _Metallic;
o.Smoothness = _Glossiness;
o.Emission = 0.0;
o.Alpha = texColor.a;
o.Occlusion = 1.0;
o.Normal = worldNormal;
LightingStandard_GI(o, giInput, gi);
c += LightingStandard (o, worldViewDir, gi);
UNITY_OPAQUE_ALPHA(c.a);
return c;
}
ENDCG
}
}
}