Harbor 监控指标分析

harbor version: 2.10.0

Harbor 监控指标主要包含以下几个部分,具体可以参考 Harbor Exporter Metrics

  1. harbor health
  2. system info
  3. project info
  4. job service

代码https://github.com/goharbor/harbor/blob/8bec57ffd45b4bd31e190ae3b499086eb5d9cb07/src/pkg/exporter/exporter.go#L50

harbor health

harbor health 通过调用 /api/v2.0/health 查询,代码如下:

https://github.com/goharbor/harbor/blob/8bec57ffd45b4bd31e190ae3b499086eb5d9cb07/src/pkg/exporter/health_collector.go#L26

~/go/src/xxx/harborctl (master ✗) curl -k -u 'user@password' -X GET https://reg.srv.xxx.cn/api/v2.0/health | jq
{
  "components": [
    {
      "name": "core",
      "status": "healthy"
    },
    {
      "name": "database",
      "status": "healthy"
    },
    {
      "name": "jobservice",
      "status": "healthy"
    },
    {
      "name": "portal",
      "status": "healthy"
    },
    {
      "name": "redis",
      "status": "healthy"
    },
    {
      "name": "registry",
      "status": "healthy"
    },
    {
      "name": "registryctl",
      "status": "healthy"
    }
  ],
  "status": "healthy"
}

System info

system info 通过调用 /api/v2.0/systeminfo查询,代码如下:

https://github.com/goharbor/harbor/blob/8bec57ffd45b4bd31e190ae3b499086eb5d9cb07/src/pkg/exporter/system_collector.go#L29

~/go/src/xxx/harborctl (master ✗) curl -k -u 'user@password' -X GET https://reg.srv.xxx.cn/api/v2.0/systeminfo | jq
{
  "auth_mode": "ldap_auth",
  "banner_message": "",
  "current_time": "2024-03-12T03:54:47.921Z",
  "external_url": "https://reg.srv.xxx.cn",
  "harbor_version": "v2.10.0-6abb4eab",
  "has_ca_root": false,
  "notification_enable": true,
  "oidc_provider_name": "",
  "primary_auth_mode": false,
  "project_creation_restriction": "adminonly",
  "read_only": false,
  "registry_storage_provider_name": "s3",
  "registry_url": "reg.srv.xxx.cn",
  "self_registration": false
}

Project info

Project info 通过读取数据库记录进行查询,代码如下:

https://github.com/goharbor/harbor/blob/8bec57ffd45b4bd31e190ae3b499086eb5d9cb07/src/pkg/exporter/project_collector.go#L30

harbor=> SELECT project_metadata.value AS public, COUNT(project_metadata.value) AS count
harbor-> FROM project INNER JOIN project_metadata ON project.project_id=project_metadata.project_id
harbor-> WHERE project.deleted=FALSE AND project_metadata.name='public'
harbor-> GROUP BY project_metadata.value;
 public | count 
--------+-------
 true   |    19
 false  |    12
(2 rows)
harbor=> SELECT project.project_id, project.name, project_metadata.value AS public, quota.hard AS quota, quota_usage.used AS usage FROM project
harbor-> INNER JOIN project_metadata ON (project.project_id = project_metadata.project_id)
harbor-> INNER JOIN quota ON project.project_id = CAST(quota.reference_id AS Integer)
harbor-> INNER JOIN quota_usage ON project.project_id = CAST(quota_usage.reference_id AS Integer)
harbor-> WHERE quota.reference='project' AND quota_usage.reference='project' AND project.deleted=FALSE AND project_metadata.name='public';
 project_id |             name              | public |           quota           |            usage            
------------+-------------------------------+--------+---------------------------+-----------------------------
         28 | xxx-prediction          | false  | {"storage": -1}           | {"storage": 66540139800}
         19 | hivesec                       | true   | {"storage": -1}           | {"storage": 29397564588}
         23 | kubeedge-cd                   | false  | {"storage": -1}           | {"storage": 27229995516}
         69 | xxx-onboard-system      | true   | {"storage": -1}           | {"storage": 15794403147}
         18 | infra-operation               | false  | {"storage": -1}           | {"storage": 1086170972483}
         29 | xxx-common-test         | true   | {"storage": 536870912000} | {"storage": 10326108416}
          3 | xxx-all                 | true   | {"storage": -1}           | {"storage": 5141042260695}
          4 | xxx-ai-platform         | true   | {"storage": -1}           | {"storage": 33540785742}
         17 | xxx-test                | true   | {"storage": -1}           | {"storage": 60594336086}
         16 | perception-test               | true   | {"storage": -1}           | {"storage": 1281251136969}
         67 | cloud-test                    | true   | {"storage": -1}           | {"storage": 35962611310}
         11 | xxx-simulation-services | true   | {"storage": -1}           | {"storage": 962089168777}
         34 | xxx-edge                | true   | {"storage": -1}           | {"storage": 396728976}
          8 | xxx-production          | false  | {"storage": -1}           | {"storage": 778171807755}
         32 | simulation-jobs               | true   | {"storage": -1}           | {"storage": 7500526904231}
         68 | xxx-tke                 | false  | {"storage": -1}           | {"storage": 24142197231}
          5 | xxx-development         | false  | {"storage": -1}           | {"storage": 865725642635}
         24 | xxx-modules-all         | true   | {"storage": -1}           | {"storage": 28905956667895}
          1 | library                       | true   | {"storage": -1}           | {"storage": 35962611310}
          6 | xxx-infra               | false  | {"storage": -1}           | {"storage": 1599663489}
         14 | xxx-uat                 | false  | {"storage": -1}           | {"storage": 19526673706}
         25 | xxx-ui                  | true   | {"storage": -1}           | {"storage": 150635978}
         10 | xxx-simulation          | true   | {"storage": -1}           | {"storage": 7349189814197}
         21 | xxx-rd-testing          | false  | {"storage": -1}           | {"storage": 1899226810}
         31 | data-closedloop               | true   | {"storage": -1}           | {"storage": 20697007871}
         27 | xxx-production-external | false  | {"storage": -1}           | {"storage": 233172664}
         15 | google_containers             | true   | {"storage": -1}           | {"storage": 235452327}
          9 | xxx-public              | true   | {"storage": -1}           | {"storage": 1606672360903}
         12 | xxx-staging             | false  | {"storage": -1}           | {"storage": 607922059044}
         13 | xxx-training-framework  | true   | {"storage": -1}           | {"storage": 22876361554}
          7 | xxx-perception          | false  | {"storage": -1}           | {"storage": 749309031}
(31 rows)
harbor=> SELECT project.project_id, COUNT(project.project_id) AS member_total
harbor-> FROM project INNER JOIN project_member ON project.project_id=project_member.project_id
harbor-> WHERE project.deleted=FALSE AND project_member.entity_type='u'
harbor-> GROUP BY project.project_id, project_member.entity_type;
 project_id | member_total 
------------+--------------
         11 |            6
          1 |            2
          5 |           10
         12 |           10
         68 |            2
         10 |            2
         19 |            3
         27 |            2
         21 |            4
         23 |            9
          4 |            3
         29 |            6
         14 |            2
          3 |           40
         24 |            7
         32 |            4
          6 |            2
         15 |            2
         28 |            5
          9 |           21
          7 |            2
          8 |            9
         34 |            3
         18 |           10
         31 |            2
         17 |           10
         13 |            4
         69 |            4
         67 |            1
         25 |            4
         16 |           11
(31 rows)
harbor=> SELECT repository.project_id, COUNT(repository.project_id) AS repo_total, SUM(repository.pull_count) AS pull_total
harbor-> FROM  project INNER JOIN repository ON project.project_id=repository.project_id
harbor-> WHERE project.deleted=FALSE
harbor-> GROUP BY repository.project_id;
 project_id | repo_total | pull_total 
------------+------------+------------
         29 |          5 |          0
         68 |          9 |          0
          4 |         68 |          0
         34 |          1 |          0
         67 |          4 |          5
         32 |          2 |          0
         10 |         27 |          0
          7 |          1 |          0
          9 |       1446 |          0
         15 |          7 |          0
          6 |          9 |          0
         12 |        147 |          0
         24 |       8730 |          0
         19 |         84 |          0
         25 |          3 |          0
         69 |          3 |          0
         31 |         12 |          0
         21 |          2 |          0
         14 |         17 |          0
          3 |        522 |          0
         17 |         76 |          0
         28 |          6 |          0
         13 |          1 |          0
          1 |          4 |          0
          5 |        201 |          2
         18 |       2054 |          0
         16 |        206 |          0
         27 |          6 |          0
         23 |         52 |          0
         11 |        107 |          0
          8 |        215 |          0
(31 rows)
harbor=> SELECT artifact.project_id, artifact.type AS artifact_type, COUNT(artifact.type) AS artifact_total
harbor-> FROM project INNER JOIN artifact ON project.project_id=artifact.project_id
harbor-> WHERE project.deleted=FALSE
harbor-> GROUP BY artifact.project_id, type;
 project_id | artifact_type | artifact_total 
------------+---------------+----------------
          1 | IMAGE         |             43
          3 | IMAGE         |           8915
          4 | IMAGE         |             80
          5 | IMAGE         |          11017
          6 | IMAGE         |             47
          7 | IMAGE         |              1
          8 | IMAGE         |           7276
          9 | IMAGE         |          12395
          9 | UNKNOWN       |              1
         10 | IMAGE         |           2358
         11 | IMAGE         |          12426
         12 | IMAGE         |           6912
         13 | IMAGE         |              8
         14 | IMAGE         |            900
         15 | IMAGE         |              8
         16 | IMAGE         |            964
         17 | IMAGE         |            364
         18 | CHART         |              2
         18 | IMAGE         |          13867
         19 | IMAGE         |            102
         21 | IMAGE         |              4
         23 | IMAGE         |            222
         24 | IMAGE         |          40259
         25 | IMAGE         |             44
         27 | IMAGE         |             56
         28 | IMAGE         |             18
         29 | IMAGE         |              6
         31 | IMAGE         |             35
         32 | IMAGE         |           3221
         34 | IMAGE         |             52
         67 | IMAGE         |             43
         68 | IMAGE         |             66
         69 | IMAGE         |             20
(33 rows)

Job service

以下几个 task 相关的 metrics 是通过 harbor exporter 组件进行获取的。

https://github.com/goharbor/harbor/blob/dbe9790147b8ec4ad6aabe7a6665edfe998d99d5/src/pkg/exporter/js_collector.go#L25

task_queue_size, task_queue_latency

r-wz9m4ifqyj1opzlies.redis.rds.aliyuncs.com:6379[1]> LLEN "{harbor-server}:jobs:GARBAGE_COLLECTION"
(integer) 0
r-wz9m4ifqyj1opzlies.redis.rds.aliyuncs.com:6379[1]> LINDEX "{harbor-server}:jobs:GARBAGE_COLLECTION" -1
(nil)

task_concurrency

🍺 /home/xxx/liangzheng ☞ redis-cli -h r-wz9m4ifqyj1opzlies.redis.rds.aliyuncs.com -a <password>
r-wz9m4ifqyj1opzlies.redis.rds.aliyuncs.com:6379> SELECT 1
OK
r-wz9m4ifqyj1opzlies.redis.rds.aliyuncs.com:6379[1]> SMEMBERS "{harbor-server}:known_jobs"
 1) "GARBAGE_COLLECTION"
 2) "REPLICATION"
 3) "IMAGE_SCAN"
 4) "IMAGE_SCAN_ALL"
 5) "WEBHOOK"
 6) "SCAN_DATA_EXPORT"
 7) "SCHEDULER"
 8) "PURGE_AUDIT_LOG"
 9) "DEMO"
10) "EXECUTION_SWEEP"
11) "IMAGE_GC"
12) "RETENTION"
13) "IMAGE_REPLICATE"
14) "SLACK"
15) "SYSTEM_ARTIFACT_CLEANUP"
16) "AUDIT_LOGS_GDPR_COMPLIANT"
17) "P2P_PREHEAT"
r-wz9m4ifqyj1opzlies.redis.rds.aliyuncs.com:6379[1]> HGETALL "{harbor-server}:jobs:REPLICATION:lock_info"
1) "df1fa66ce3992cc9e1449483"
2) "0"
3) "1ef8a49c990d15220fd5443c"
4) "0"
5) "3280a0bc80141409ac2d9e27"
6) "0"

task_scheduled_total

r-wz9m4ifqyj1opzlies.redis.rds.aliyuncs.com:6379[1]> ZRANGEBYSCORE "{harbor-server}:scheduled" -inf +inf withscores limit 0 20
(empty list or set)

以下三个参数是通过 Harbor Jobservice 组件获取的,代码如下:

https://github.com/goharbor/harbor/blob/8bec57ffd45b4bd31e190ae3b499086eb5d9cb07/src/lib/metric/jobservice.go#L34

jobservice_info

Jobservice info 包括:

  1. node 信息
  2. redis pool id
  3. redis worker count,这个值首先会从环境变量 JOB_SERVICE_POOL_WORKERS中读取,如果不设置则默认为 10
# HELP jobservice_info the information of jobservice
# TYPE jobservice_info gauge
jobservice_info{node="harbor-jobservice-64644b6477-d4pl5:10.233.107.26",pool="2ca124a2f99043abecdd4ba9",workers="10"} 1

jobservice_task_process_time_seconds 和 jobservice_task_total

各种 type(例如 EXECUTION_SWEEP, SCHEDULER 等等) 的 job (fail, stop, success)运行时间和状态统计

# HELP jobservice_task_process_time_seconds The time duration of the task processing time
# TYPE jobservice_task_process_time_seconds summary
jobservice_task_process_time_seconds{status="success",type="EXECUTION_SWEEP",quantile="0.5"} NaN
jobservice_task_process_time_seconds{status="success",type="EXECUTION_SWEEP",quantile="0.9"} NaN
jobservice_task_process_time_seconds{status="success",type="EXECUTION_SWEEP",quantile="0.99"} NaN
jobservice_task_process_time_seconds_sum{status="success",type="EXECUTION_SWEEP"} 0.512839206
jobservice_task_process_time_seconds_count{status="success",type="EXECUTION_SWEEP"} 1
# HELP jobservice_task_total The number of processed tasks
# TYPE jobservice_task_total counter
jobservice_task_total{status="success",type="EXECUTION_SWEEP"} 1
jobservice_task_total{status="success",type="SCHEDULER"} 1

参考链接

https://github.com/gocraft/work
https://goharbor.io/docs/2.10.0/administration/jobservice-dashboard/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容