# Java多线程(三)

线程同步

并发:同一个对象被多个线程同时操作

处理多线程问题时,多个线程访问同一个对象,并且某些线程还想修改这个对象。
这时候我们就需要线程同步
线程同步其实就是一种等待机制,多个需要同时访问此对象的线程进入这个对象的等待池形成队列,等待前面线程使用完毕,下一个线程再使用。

线程同步形成条件:队列+锁

由于同一进程的多个线程共享同一块存储空间,在带来方便的同时,也带来了访问冲突的问题,为了保证数据在方法中被访问的正确性,在访问时加入锁机制synchronized,在一个线程获得对象的排它锁,独占资源,其他线程必须等待,使用后释放锁即可,但存在以下问题:

  • 一个线程持有锁会导致其他所有需要此锁的线程挂起
  • 在多线程竞争下,加锁与释放锁会导致比较多的上下文切换和调度延时,引起性能问题
  • 如果一个优先级高的线程等待一个优先级低的线程释放锁,会导致优先级倒置,引起性能问题

并发问题案例:不安全的银行

public class UnsafeBank {
    public static void main(String[] args) {
        Account account = new Account(100_0000, "基金");
        Drawing you = new Drawing(account, 50_0000, "你");
        Drawing girlFriend = new Drawing(account, 100_0000, "女朋友");
        you.start();
        girlFriend.start();
    }
}
class Account {
    int money;
    String name;
    public Account(int money, String name) {
        this.money = money;
        this.name = name;
    }
}
class Drawing extends Thread {
    Account account;
    int drawingMoney;
    int nowMoney;
    public Drawing(Account account, int drawingMoney, String name) {
        super(name);
        this.account = account;
        this.drawingMoney = drawingMoney;
    }
    @Override
    public void run() {
        //判断有没有钱
        if (account.money - drawingMoney < 0) {
            System.out.println(this.getName() + "Not enough money!");
            return;
        }
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        //卡内余额
        account.money -= drawingMoney;
        nowMoney += drawingMoney;
        System.out.println(account.name + "余额为" + account.money);
        System.out.println(this.getName() + "手里的钱" + nowMoney);
    }
}

执行结果

基金余额为-500000
你手里的钱500000
基金余额为-500000
女朋友手里的钱1000000

同步方法及同步块

  • 由于我们可以通过private关键字来保证数据对象只能被方法访问,所以我们只需要针对方法提出一套机制,这套机制就是sunchronized关键字,它包括两种用法:synchronized方法和synchronized块。

  • 同步方法:public synchronized void method(int args) {}

  • synchronized方法控制对“对象”的访问,每个对象对应一把锁,每个synchronized方法都必须获得调用该方法的对象的锁才能执行,否则线程会阻塞,方法一执行,就独占该锁,直到该方法返回才释放锁,后面被阻塞的线程才能获得这个锁,继续执行。

  • 缺陷:若将一个大的方法申明为synchronized将会影响效率

synchronized默认锁this,是这个类本身,所以如果要对Account上锁则需要使用同步块:

  • 同步块:synchronized(Obj){}
  • Obj称之为同步监视器
    1. Obj可以是任何对象,但是推荐使用共享资源作为同步监视器
    1. 同步方法中无需指定同步监视器,因为同步方法的同步监视器就是this,是对象本身,或者是class
  • 同步监视器执行过程
  • 1.第一个线程访问,锁定同步监视器,执行其中代码
  • 2.第二个线程访问,发现同步监视器被锁定,无法访问
  • 3.第一个线程访问完毕,解锁同步监视器
  • 4.第二个线程访问,发现同步监视器没有锁,然后锁定并访问
public void run() {
        synchronized (account) {
            //判断有没有钱
            if (account.money - drawingMoney < 0) {
                System.out.println(this.getName() + "钱不够了!");
                return;
            }
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            //卡内余额
            account.money -= drawingMoney;
            nowMoney += drawingMoney;
            System.out.println(account.name + "余额为" + account.money);
            System.out.println(this.getName() + "手里的钱" + nowMoney);
        }
}

死锁

多个线程各自占有一些共享资源,并且互相等待其他线程占有的资源才能运行,而导致两个或者多个线程都在等待对方释放资源,都停止执行的情形。某一个同步块同时拥有“两个以上对象的锁”,就可能发生“死锁”问题。

//死锁:多个线程互相拥有对方需要的资源,然后形成僵持
public class DeadLock {
    public static void main(String[] args) {
        Makeup g1 = new Makeup(0, "灰姑娘");
        Makeup g2 = new Makeup(1, "白雪公主");
        g1.start();
        g2.start();
    }
}
//口红
class LipStick {
}
//镜子
class Mirror {
}
class Makeup extends Thread {
    //需要的资源只有一份,用static保证只有一份
    static LipStick lipStick = new LipStick();
    static Mirror mirror = new Mirror();
    int choice;//选择
    String girlName;//使用化妆品的人
    public Makeup(int choice, String girlName) {
        this.choice = choice;
        this.girlName = girlName;
    }
    @Override
    public void run() {
        try {
            makeup();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
    //互相持有对方的锁,需要拿到对方的资源
    private void makeup() throws InterruptedException {
        if (choice == 0) {
            synchronized (lipStick) {//获得口红的锁
                System.out.println(this.girlName + "获得口红的锁");
                Thread.sleep(1000);
                synchronized (mirror) {//一秒后想获得镜子
                    System.out.println(this.girlName + "获得镜子的锁");
                }
            }
        } else {
            synchronized (mirror) {//获得口红的锁
                System.out.println(this.girlName + "获得镜子的锁");
                Thread.sleep(2000);
                synchronized (lipStick) {//一秒后想获得镜子
                    System.out.println(this.girlName + "获得口红的锁");
                }
            }
        }
    }
}

产生死锁的四个必要条件:
1.互斥条件:一个资源每次只能被一个进程使用
2.请求与保持条件:一个进程因请求资源而阻塞时,对以获得的资源保持不放。
3.不剥夺条件:进程已获得的资源,在位置用完之前,不能强行剥夺。
4.循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。

Lock(锁)

  • 从JDK 5.0开始,Java提供了更强大的线程同步机制——通过显示顶底同步锁对象来实现同步。同步锁使用Lock对象充当
  • java.util.concurrent.locks.Lock接口是控制多个线程对共享资源进行访问的工具。锁提供了对共享资源的独占访问,每次只能有一个线程对Lock对象加锁,线程开始访问共享资源之前应先获得Lock对象
  • ReentrantLock类实现了Lock,它拥有与synchronized相同的并发性和内存语义,在实现线程安全的控制中,比较常用的是ReentrantLock,可以显示加锁,释放锁
//测试Lock锁
public class TestLock {
    public static void main(String[] args) {
        TestLock2 testLock2 = new TestLock2();
        new Thread(testLock2).start();
        new Thread(testLock2).start();
        new Thread(testLock2).start();
    }
}
class TestLock2 implements Runnable {
    private int ticketNum = 10;
    //定义lock锁
    private final ReentrantLock lock = new ReentrantLock();
    @Override
    public void run() {
        while (true) {
            try {
                lock.lock();//加锁
                if (ticketNum > 0) {
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(ticketNum--);
                } else break;
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                lock.unlock();//解锁
            }
        }
    }
}

synchronized与Lock的对比

  • Lock是显示锁(手动开启和关闭锁,不能忘记关闭锁)synchronized是隐式锁,出了作用域自动释放
  • Lock只有代码块锁,synchronized有代码块锁和方法锁
  • 使用Lock锁,JVM将花费较少的时间来调度线程,性能更好。并且具有更好的扩展性(提供更多子类)
  • 优先使用顺序:Lock > 同步代码块(已经进入了方法体,分配了相应资源) > 同步方法(在方法体之外)

线程协作(生产者消费者模式)

  • 应用场景:生产者和消费者问题
    1. 假设仓库中只能存放一件产品,生产者将生产出来的产品放入仓库,消费者将仓库中产品取走消费
    1. 如果仓库中没有产品,则生产者将产品放入仓库,否则停止生产并等待,知道仓库中的产品被消费者取走为止
    1. 如果仓库中方有产品,则消费者可以将产品取走消费,否则停止消费并等待,直到仓库中再次放入产品为止

这是一个线程同步问题,生产者和消费者共享同一个资源,并且生产者和消费者之间相互依赖,互为条件

img

管程法

并发协作模型“生产者/消费者模式”—>管程法

  • 生产者:负责生产数据的模块(可能是方法,对象,线程,进程);
  • 消费者:负责处理数据的模块(可能是方法,对象,线程,进程);
  • 缓冲区:消费者不能直接使用生产者的数据,它们之间有个“缓冲区”
    生产者将生产好的数据放入缓冲区,消费者从缓冲区拿出数据
//测试:生产者消费者模型-->利用缓冲区解决:管程法
//生产者,消费者,产品,缓冲区
public class TestPC {
    public static void main(String[] args) {
        SynContainer synContainer = new SynContainer();
        new Producer(synContainer).start();
        new Consumer(synContainer).start();
    }
}
//生产者
class Producer extends Thread {
    SynContainer container;
    public Producer(SynContainer container) {
        this.container = container;
    }
    //生产
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            System.out.println("生产了第" + i + "只鸡");
            container.push(new Chicken(i));
        }
    }
}
//消费者
class Consumer extends Thread {
    SynContainer container;
    public Consumer(SynContainer container) {
        this.container = container;
    }
    //消费
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            System.out.println("消费了第" + container.pop().id + "只鸡");
        }
    }
}
class Chicken {
    int id;
    public Chicken(int id) {
        this.id = id;
    }
}
//缓冲区
class SynContainer {
    Chicken[] chickens = new Chicken[10];//容器大小
    int count = 0;//容器计数器
    //生产者放入产品
    public synchronized void push(Chicken chicken) {
        //如果容器满了,等待消费者消费
        while (count >= chickens.length) {
            //通知消费者消费,生产等待
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        //如果容器没满,需要丢入产品
        chickens[count] = chicken;
        count++;
        //可以通知消费者消费了
        this.notifyAll();
    }
    //消费者消费产品
    public synchronized Chicken pop() {
        //判断能否消费
        while (count == 0) {
            //等待生产者生产,消费者等待
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        //如果可以消费
        count--;
        Chicken chicken = chickens[count];
        //吃完了,通知消费者生产
        this.notifyAll();
        return chicken;
    }
}

信号灯法

//测试:生产者消费者模型-->利用缓冲区解决:信号灯法
public class TestPC2 {
    public static void main(String[] args) {
        TV tv = new TV();
        new Player(tv).start();
        new Watcher(tv).start();
    }
}
//生产者-->演员
class Player extends Thread {
    TV tv = new TV();
    public Player(TV tv) {
        this.tv = tv;
    }
    @Override
    public void run() {
        for (int i = 0; i < 20; i++) {
            if (i % 2 == 0) {
                this.tv.play("看B站");
            } else {
                this.tv.play("看小说");
            }
        }
    }
}
//消费者-->观众
class Watcher extends Thread {
    TV tv = new TV();
    public Watcher(TV tv) {
        this.tv = tv;
    }
    @Override
    public void run() {
        for (int i = 0; i < 20; i++) {
            tv.watch();
        }
    }
}
//产品-->节目
class TV {
    //演员表演,观众等待
    //观众观看,演员等待
    String voice;//表演的节目
    boolean flag = true;//信号灯
    //表演
    public synchronized void play(String voice) {
        if (!flag) {
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        System.out.println("演员表演了:" + voice);
        //通知观众观看
        this.notifyAll();
        this.voice = voice;
        //改变信号灯
        this.flag = !this.flag;
    }
    //观看
    public synchronized void watch() {
        if (flag) {
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        System.out.println("观众观看了:" + voice);
        //通知演员表演
        this.notifyAll();
        //改变信号灯
        this.flag = !this.flag;
    }
}

线程池

  • 背景:经常创建和销毁、使用量特别大的资源,比如并发情况下的线程,对性能影响很大。

  • 思路:提前创建多个线程,放入线程池中,使用时直接获取,使用完放回池中。可以避免频繁创建销毁、实现重复利用。类似生活中的公共交通工具。

  • 好处:

    1. 提高响应速度(减少了创建新线程的时间)
    1. 降低资源消耗(重复利用线程池中的资源,不需要每次都构建)
    1. 便于线程管理

      • corePoolSize:核心池的大小
      • maximumPoolSize:最大线程数
      • keepAliveTime:线程没有任务时最多保持多长时间后会终止

使用线程池

  • JDK 5.0起提供了线程池相关API:ExecutorService和Executors
  • ExecutorService:真正的线程池接口。常见子类ThreadPoolExecutor
    1. void execute(Tunnable command):执行任务/命令,没有返回值,一般用来执行Runnable
    1. <T>Future <T>submit(Callable<T> task):执行任务,有返回值,一般用来执行Callable
    1. void shutdown():关闭线程池
  • Executors:工具类、线程池的工厂类,用于创建并返回不同类型的线程池
//测试线程池
public class TestPool {
    public static void main(String[] args) {
        //1.创建线程池
        //newFixedThreadPool参数为线程池大小
        ExecutorService service = Executors.newFixedThreadPool(10);
        //施行
        service.execute(new MyThread());
        service.execute(new MyThread());
        service.execute(new MyThread());
        service.execute(new MyThread());
        //2.关闭连接
        service.shutdown();
    }
}
class MyThread implements Runnable {
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName());
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容