AI核心技术-探索机器学习的6大革命性应用

关注洋洋科创星球领取AI学习礼包!


机器学习6大应用场景分析


数据分析——量化交易——风控领域——工业制造——特征工程——数据挖掘



01 机器学习在数据分析领域

机器学习可不仅仅就是模型,还包括了处理数据的一套流水线

数据处理方法较多基本根据业务选择合适的方法套路相对固定,一套脚本走天下这是建模前必须要完成的一件事.


02 机器学习在数据挖掘领域

模型就是要让计算机来解释我们的业务了,从人为主观到计算机认为。

在数据分析中是我觉得,我认为;在数据挖掘模型中只有模型输出的结果。

数据挖掘是当下最热门领域之一,工艺参数优化,业务决策等都靠它了


03 机器学习在特征工程领域

无论后续要做什么事,特征工程都是最核心的一步。

特征决定了结果的上限,算法只决定如何能更好逼近这个上限。

最耗时,耗经历的就是特征了,套路难固定,基本全靠业务分析。


04 机器学习在量化交易领域

热门方向,都在向往的方向(躺着就赚钱),真的这么简单吗?为什么量化交易算法经常失效?历史数据稳赚,新数据就不行了呢?


05机器学习在风控管理领域

不仅仅是独立的样本数据,关系数据也可以。

本质来说还是建模分析,是一个相对综合的领域。


06 机器学习在工业制造领域

工业(制造业)现在大量数字化转型,机器学习早已赋能制造业。

新能源企业:机器学习模型寻找合适的电解质材料,设计与加工。

汽车企业:机器学习建模碰撞检测,寻找合适的车型设计指标。

化工企业:机器学习建模进行安全识别,实时监控安全问题。车间流水线:智能识别,缺陷检测等,替代大量人工操作。


©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容