大数据学习笔记:Hadoop之HDFS(下)

Hadoop中NameNode单点故障解决方案

Hadoop 1.0内核主要由两个分支组成:MapReduce和HDFS,这两个系统的设计缺陷是单点故障,即MR的JobTracker和HDFS的NameNode两个核心服务均存在单点问题,这里只讨论HDFS的NameNode单点故障的解决方案。

[问题]

HDFS仿照google GFS实现的分布式存储系统,由NameNode和DataNode两种服务组成,其中NameNode是存储了元数据信息(fsimage)和操作日志(edits),由于它是唯一的,其可用性直接决定了整个存储系统的可用性。因为客户端对HDFS的读、写操作之前都要访问name node服务器,客户端只有从name node获取元数据之后才能继续进行读、写。一旦NameNode出现故障,将影响整个存储系统的使用。

[解决方案]

Hadoop官方提供了一种quorum journal manager来实现高可用,在高可用配置下,edit log不再存放在名称节点,而是存放在一个共享存储的地方,这个共享存储由若干Journal Node组成,一般是3个节点(JN小集群), 每个JN专门用于存放来自NN的编辑日志,编辑日志由活跃状态的名称节点写入。

要有2个NN节点,二者之中只能有一个处于活跃状态(active),另一个是待命状态(standby),只有active节点才能对外提供读写HDFS服务,也只有active态的NN才能向JN写入编辑日志;standby的名称节点只负责从JN小集群中的JN节点拷贝数据到本地存放。另外,各个DATA NODE也要同时向两个NameNode节点报告状态(心跳信息、块信息)。


一主一从的2个NameNode节点同时和3个JN构成的组保持通信,活跃的NameNode节点负责往JN集群写入编辑日志,待命的NN节点负责观察JN组中的编辑日志,并且把日志拉取到待命节点(接管Secondary NameNode的工作)。再加上两节点各自的fsimage镜像文件,这样一来就能确保两个NN的元数据保持同步。一旦active不可用,standby继续对外提供服。架构分为手动模式和自动模式,其中手动模式是指由管理员通过命令进行主备切换,这通常在服务升级时有用,自动模式可降低运维成本,但存在潜在危险。这两种模式下的架构如下。

[手动模式]


模拟流程:

1. 准备3台服务器分别用于运行JournalNode进程(也可以运行在date node服务器上),准备2台namenode服务器用于运行NameNode进程(两台配置 要一样),DataNode节点数量不限。

2. 分别启动3台JN服务器上的JournalNode进程,分别在date node服务器启动DataNode进程。

3. 需要同步2台name node之间的元数据。具体做法:从第一台NN拷贝元数据到放到另一台NN,然后启动第一台的NameNode进程,再到另一台名称节点上做standby引导。

4. 把第一台名节点的edit日志初始化到JN节点,以供standby节点到JN节点拉取数据。

5. 启动standby状态的NameNode节点,这样就能同步fsimage文件。

6. 模拟故障,手动把active状态的NN故障,转移到另一台NameNode。

[自动模式]


模拟流程:

在手动模式下引入了ZKFC(DFSZKFailoverController)和zookeeper集群

ZKFC主要负责: 健康监控、session管理、leader选举

zookeeper集群主要负责:服务同步

1-6步同手动模式

7. 准备3台主机安装zookeeper,3台主机形成一个小的zookeeper集群.

8. 启动ZK集群每个节点上的QuorumPeerMain进程

9. 登录其中一台NN, 在ZK中初始化HA状态

10. 模拟故障:停掉活跃的NameNode进程,提前配置的zookeeper会把standby节点自动变为active,继续提供服务。

脑裂

脑裂是指在主备切换时,由于切换不彻底或其他原因,导致客户端和Slave误以为出现两个active master,最终使得整个集群处于混乱状态。解决脑裂问题,通常采用隔离(Fencing)机制。

共享存储fencing:确保只有一个Master往共享存储中写数据,使用QJM实现fencing。

Qurom Journal Manager,基于Paxos(基于消息传递的一致性算法),Paxos算法是解决分布式环境中如何就某个值达成一致。

[原理]

a. 初始化后,Active把editlog日志写到JN上,每个editlog有一个编号,每次写editlog只要其中大多数JN返回成功(过半)即认定写成功。

b.  Standby定期从JN读取一批editlog,并应用到内存中的FsImage中。

c. NameNode每次写Editlog都需要传递一个编号Epoch给JN,JN会对比Epoch,如果比自己保存的Epoch大或相同,则可以写,JN更新自己的Epoch到最新,否则拒绝操作。在切换时,Standby转换为Active时,会把Epoch+1,这样就防止即使之前的NameNode向JN写日志,也会失败。

客户端fencing:确保只有一个Master可以响应客户端的请求。

[原理]

在RPC层封装了一层,通过FailoverProxyProvider以重试的方式连接NN。通过若干次连接一个NN失败后尝试连接新的NN,对客户端的影响是重试的时候增加一定的延迟。客户端可以设置重试此时和时间

Slave fencing:确保只有一个Master可以向Slave下发命令。

[原理]

a. 每个NN改变状态的时候,向DN发送自己的状态和一个序列号。

b. DN在运行过程中维护此序列号,当failover时,新的NN在返回DN心跳时会返回自己的active状态和一个更大的序列号。DN接收到这个返回是认为该NN为新的active。

b. 如果这时原来的active(比如GC)恢复,返回给DN的心跳信息包含active状态和原来的序列号,这时DN就会拒绝这个NN的命令。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351

推荐阅读更多精彩内容