病原微生物扩增子数据分析实战(一):bcl2fastq软件完成数据拆分

懂得了那么多道理,却依然过不好这一生。

所以理论归理论,最终要落实到分析代码上,咱们从这一篇开始,介绍一套扩增子数据分析流程。

闲话少叙,首先介绍一下项目背景:

  • 测序平台: Illumina MiSeq,双端(Paired-end)测序
  • 服务器:CentOS 7操作系统,128G内存,CPU 48线程
  • 编程语言:Bash script、Python

NGS测序项目大致分为二个部分:

  1. 湿实验部分,即取样、提取、建库以及上机测序
  2. 干实验部分,即测序数据的生物信息分析

测序仪运行结束,就完成了生物样本的数字化过程,但此时核酸的信息,具体来说是DNA的序列信息(RNA样本的话会先反转录成DNA再测序),是保存在称为BCL(Binary Base Call)的文件中的,而生物信息分析工作即是从这里开始。

首先,要将BCL文件转化成FASTQ文件格式,过程并不复杂,一条命令就够了。

/path-to/bcl2fastq_V219 \
-R /path-to/200821_M06862_0006_000000000-C9TL7 \
--sample-sheet /path-to/SampleSheet.csv \
--output-dir /path-to/Demultiplexed \
--barcode-mismatches 1 \
--use-bases-mask Y75n,I8,I8,Y75n

bcl2fastq_V219,是illumina官方提供的BCL转FASTQ格式的软件,这里用的版本是v2.19。

-R参数,是下机数据所在的目录,内容如下,其中的RunInfo.xml文件记录了测序的一些重要信息,如总共运行了多少个循环等。

200821_M06862_0006_000000000-C9TL7
├── AnalysisError.txt
├── AnalysisLog.txt
├── Basecalling_Netcopy_complete_Read1.txt
├── Basecalling_Netcopy_complete_Read2.txt
├── Basecalling_Netcopy_complete_Read3.txt
├── Basecalling_Netcopy_complete_Read4.txt
├── Basecalling_Netcopy_complete.txt
├── CompletedJobInfo.xml
├── Config
├── Data
├── GenerateFASTQRunStatistics.xml
├── ImageAnalysis_Netcopy_complete_Read1.txt
├── ImageAnalysis_Netcopy_complete_Read2.txt
├── ImageAnalysis_Netcopy_complete_Read3.txt
├── ImageAnalysis_Netcopy_complete_Read4.txt
├── ImageAnalysis_Netcopy_complete.txt
├── InterOp
├── Logs
├── QueuedForAnalysis.txt
├── Recipe
├── RTAComplete.txt
├── RunCheckDetail.txt
├── RunInfo.xml
├── runParameters.xml
├── SampleSheet.csv
└── Thumbnail_Images

--sample-sheet参数,样本清单,内容如下:

[Header],,,,,,,,,
IEMFileVersion,5,,,,,,,,
Date,7/30/2020,,,,,,,,
Workflow,GenerateFASTQ,,,,,,,,
Application,FASTQ Only,,,,,,,,
Instrument Type,MiSeq,,,,,,,,
Assay,Nextera DNA,,,,,,,,
Index Adapters,"Nextera Index Kit (24 Indexes, 96 Samples)",,,,,,,,
Description,,,,,,,,,
Chemistry,Amplicon,,,,,,,,
,,,,,,,,,
[Reads],,,,,,,,,
76,,,,,,,,,
76,,,,,,,,,
,,,,,,,,,
[Settings],,,,,,,,,
ReverseComplement,0,,,,,,,,
Adapter,CTGTCTCTTATACACATCT,,,,,,,,
,,,,,,,,,
[Data],,,,,,,,,
Sample_ID,Sample_Name,Sample_Plate,Sample_Well,I7_Index_ID,index,I5_Index_ID,index2,Sample_Project,Description
wenku1,,,,D701,ATTACTCG,D504,GGCTCTGA,,
wenku2,,,,D702,TCCGGAGA,D504,GGCTCTGA,,
wenku3,,,,D703,CGCTCATT,D504,GGCTCTGA,,
wenku4,,,,D704,GAGATTCC,D504,GGCTCTGA,,
wenku5,,,,D705,ATTCAGAA,D504,GGCTCTGA,,

这是一个每行都用逗号,隔开的SampleSheet.csv文件,可以用Excel或WPS软件编辑成新的,也可以用Illumina Experiment Manager软件来制作清单文件。

由于测序仪的通量比较大,如果一次只测一个样本,会造成非常大的浪费,因此实际测序过程中都是多个样本混合在一起测,那么后期怎么把各个样本的数据(即大量的reads)分开呢,这就要涉及到建库的原理了,需要较大的篇幅才能说清,在此不便展开。

简单来说,就是各个样本都加了自己特有的条码(barcode),就是SampleSheet文件中的index和index2序列,如wenku1的index序列ATTACTCG,以及index2序列GGCTCTGA,它们的组合与其他所有文库的都不一样,依据这些条码就能实现数据的拆分,[Data]部分一行是一个样本,每行最低限度只需要填写Sample_ID和index就可以了,如果是双端index测序,再填上index2即可。

--output-dir参数,结果文件保存的目录。

--barcode-mismatches参数,拆分时允许上述index序列错配的碱基个数,通常设为1。

--use-bases-mask参数,用于指导哪些测序循环的数据要保留,哪些要丢弃,示例中Y75n,I8,I8,Y75n的含义是:第一轮测序的前75个循环要保留,之后的循环丢弃,index的8个循环全部保留,index2的8个循环全部保留,第四轮测序的前75个循环要保留,之后的循环丢弃,这样我们拆分出的数据是双端75bp,当然这个参数并非必需。

以上,就是illumina数据拆分的基本过程,结果得到FASTQ文件(每个样本2个),后续分析都是基于这些文件的。

Demultiplexed/
├── wenku1_S1_L001_R1_001.fastq.gz
├── wenku1_S1_L001_R2_001.fastq.gz
├── wenku2_S2_L001_R1_001.fastq.gz
├── wenku2_S2_L001_R2_001.fastq.gz
├── wenku3_S3_L001_R1_001.fastq.gz
├── wenku3_S3_L001_R2_001.fastq.gz
├── wenku4_S4_L001_R1_001.fastq.gz
├── wenku4_S4_L001_R2_001.fastq.gz
├── wenku5_S5_L001_R1_001.fastq.gz
└── wenku5_S5_L001_R2_001.fastq.gz

数据分析任重道远,正如莎士比亚的咏叹:

自然啊,你是充满无穷神秘的书!而我,只能读懂些许部分!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343