TCP协议知识盘点

首先需要回顾:TCP与UDP的区别、差异、以及应用场景

TCP对应的协议和UDP对应的协议

TCP对应的协议
(1) FTP(21):定义了文件传输协议,使用21端口。常说某某计算机开了FTP服务便是启动了文件传输服务。下载文件,上传主页,都要用到FTP服务。
(2) Telnet(23):(远程登陆协议)它是一种用于远程登陆的端口,用户可以以自己的身份远程连接到计算机上,通过这种端口可以提供一种基于DOS模式下的通信服务。如以前的BBS是-纯字符界面的,支持BBS的服务器将23端口打开,对外提供服务。
(3) SMTP(25):定义了简单邮件传送协议,现在很多邮件服务器都用的是这个协议,用于发送邮件。如常见的免费邮件服务中用的就是这个邮件服务端口,所以在电子邮件设置-中常看到有这么SMTP端口设置这个栏,服务器开放的是25号端口。
(4) POP3(110):它是和SMTP对应,POP3用于接收邮件。通常情况下,POP3协议所用的是110端口。也是说,只要你有相应的使用POP3协议的程序(例如Fo-xmail或Outlook),就可以不以Web方式登陆进邮箱界面,直接用邮件程序就可以收到邮件(如是163邮箱就没有必要先进入网易网站,再进入自己的邮-箱来收信)。
(5)HTTP(80)协议:是从Web服务器传输超文本到本地浏览器的传送协议。
UDP对应的协议
(1) DNS(53):用于域名解析服务,将域名地址转换为IP地址。DNS用的是53号端口。
(2) RIP:路由信息协议,端口520
(2) SNMP(161):简单网络管理协议,使用161号端口,是用来管理网络设备的。由于网络设备很多,无连接的服务就体现出其优势。
(3) TFTP(69)(Trival File Transfer Protocal),简单文件传输协议,该协议在熟知端口69上使用UDP服务。

HTTP协议是TCP对应协议之一,主要用于web超文本网络访问。

DNS是UDP队员协议之一,主要用于域名解析

Http request的几种类型

HTTP协议中共定义了八种方法或者叫“动作”来表明对Request-URI指定的资源的不同操作方式,具体介绍如下:

GET:向特定的资源发出请求。
【1】GET请求的数据会附在URL之后(就是把数据放置在HTTP协议头中),以?分割URL和传输数据,参数之间以&相连,所以相对安全性低,可以直接从包头来分析数据。且传送的数据量较小,不能大于2KB。注意在FORM(表单)中,Method默认为"GET"。

POST:向指定资源提交数据进行处理请求(例如提交表单或者上传文件)。数据被包含在请求体中。POST请求可能会导致新的资源的创建和/或已有资源的修改。 .POST把提交的数据则放置在是HTTP包的包体中,相对安全性高,且数据量一般不受限制(所以基本都用post来请求,先post json字段自证身份,然后接收回来的信息)。

PUT:向指定资源位置上传其最新内容。
DELETE:请求服务器删除Request-URI所标识的资源。
HEAD:请求读取由URL所标志的信息的首部。
OPTIONS:返回服务器针对特定资源所支持的HTTP请求方法。也可以利用向Web服务器发送'*'的请求来测试服务器的功能性。
TRACE:回显服务器收到的请求,主要用于测试或诊断。
CONNECT:HTTP/1.1协议中预留给能够将连接改为管道方式的代理服务器。

电脑上访问一个网页,整个过程是怎么样的:DNS、HTTP、TCP、OSPF、IP、ARP

  1. 浏览器分析连接指向的页面URL(http://www.baidu.com)
  2. 浏览器向DNS请求www.baidu.com.的IP地址(需要了解DNS是UDP的对应协议之一)
  3. 域名系统DNS解析出百度官网的服务器IP地址
  4. 浏览器与该服务器建立TCP连接(默认端口80)(需要了解TCP三次握手连接过程)
  5. 浏览器发出HTTP请求获取指定页面。(需要了解HTTP与HTTPS的区别)
  6. 服务器通过HTTP响应把文件对应页面发送给浏览器。
  7. TCP连接释放。
  8. 浏览器将文件进行解析,并将web网页显示给用户。(需要了解本地解析方式)

HTTPS要了解SSL

SSL协议及完整交互过程

SSL是Netscape公司所提出的安全保密协议,在浏览器(如Internet Explorer、Netscape Navigator)和Web服务器(如Netscape的Netscape Enterprise Server、ColdFusion Server等等)之间构造安全通道来进行数据传输,SSL运行在TCP/IP层之上、应用层之下,为应用程序提供加密数据通道,它采用了RC4、MD5 以及RSA等加密算法,使用40 位的密钥,适用于商业信息的加密。

开始加密通信之前,客户端和服务器首先必须建立连接和交换参数,这个过程叫做握手(handshake)。
1 客户端发出请求(ClientHello)
首先,客户端(通常是浏览器)先向服务器发出加密通信的请求,这被叫做ClientHello请求。在这一步,客户端主要向服务器提供以下信息。
(1) 支持的协议版本,比如TLS 1.0版。
(2) 一个客户端生成的随机数,稍后用于生成"对话密钥"。
(3) 支持的加密方法,比如RSA公钥加密。
(4) 支持的压缩方法。

4.2 服务器回应(SeverHello)
服务器收到客户端请求后,向客户端发出回应,这叫做SeverHello。服务器的回应包含以下内容:
(1) 确认使用的加密通信协议版本,比如TLS 1.0版本。如果浏览器与服务器支持的版本不一致,服务器关闭加密通信。
(2) 一个服务器生成的随机数,稍后用于生成"对话密钥"。
(3) 确认使用的加密方法,比如RSA公钥加密。
(4) 服务器证书。(公钥)
4.3 客户端回应
客户端收到服务器回应以后,首先验证服务器证书。如果证书不是可信机构颁布、或者证书中的域名与实际域名不一致、或者证书已经过期,就会向访问者显示一个警告,由其选择是否还要继续通信。
如果证书没有问题,客户端就会从证书中取出服务器的公钥。然后,向服务器发送下面三项信息。
(1) 一个随机数。该随机数用服务器公钥加密,防止被窃听。
(2) 编码改变通知,表示随后的信息都将用双方商定的加密方法和密钥发送。
(3) 客户端握手结束通知,表示客户端的握手阶段已经结束。这一项同时也是前面发送的所有内容的hash值,用来供服务器校验。
上面第一项的随机数,是整个握手阶段出现的第三个随机数,又称"pre-master key"。有了它以后,客户端和服务器就同时有了三个随机数,接着双方就用事先商定的加密方法,各自生成本次会话所用的同一把"会话密钥"。(会话秘钥是采用对称加密方式,而这里的公钥是采用非对称加密)
4 服务器的最后回应
服务器通过私钥解密收到客户端的第三个随机数pre-master key之后,计算生成本次会话所用的"会话密钥"。然后,向客户端最后发送下面信息。
(1)编码改变通知,表示随后的信息都将用双方商定的加密方法和密钥发送。
(2)服务器握手结束通知,表示服务器的握手阶段已经结束。这一项同时也是前面发送的所有内容的hash值,用来供客户端校验。
至此,整个握手阶段全部结束。接下来,客户端与服务器进入加密通信,就完全是使用普通的HTTP协议,只不过用"会话密钥"加密内容。

https处理的一个过程,对称加密和非对称加密

这里之前有面试官问过,用RSA以及AES两个算法,设计一套简单的加密通信逻辑,当时回答的就是这个。

  1. SSL原理很简单。当你的浏览器向服务器请求一个安全的网页(通常是 https://)
  2. 服务器就把它的证书和公匙发回来
  3. 浏览器检查证书是不是由可以信赖的机构颁发的,确认证书有效和此证书是此网站的。
  4. 浏览器使用公钥加密了一个随机对称密钥,包括加密的URL一起发送到服务器。
  5. 服务器用自己的私匙解密了你发送的钥匙。然后用这把对称加密的钥匙给你请求的URL链接解密。
  6. 服务器用你发的对称钥匙给你请求的网页加密。你也有相同的钥匙就可以解密发回来的网页了

之前那个问题,简单说就是因为RSA非对称加密,公钥是假定所有人都知道的也可以获取,密钥则不行。

所以你我双方通信,我有RSA公钥无私钥,我作为客户端。

则先抛开证书,假定你的RSA公钥是可信的,所以就是我先用RSA的公钥加密一段数据(里面包含我设置的AES的密钥),发送给你。

你拿私钥解密,得到AES的密钥,然后你有了AES的对称密钥,就可以进行加密通信了。

原理是一样,但是要说清楚~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容