LLM论文研读: GraphRAG的替代者LightRAG

1.背景

最近有一个很火的开源项目LightRAG,Github6.4K+星※,北邮和港大联合出品,是一款微软GraphRAG的优秀替代者,因此本qiang~得了空闲,读读论文、跑跑源码,遂有了这篇文章。

2. LightRAG框架

2.1已有RAG系统的局限性

1) 许多系统仅依赖于平面数据表示(如纯文本),限制了根据文本中实体间复杂的关系来理解和检索信息的能力。

2) 许多系统缺乏各种实体及其关系之间保持一致所需的上下文意识,导致可能无法完全解决用户的问题。

2.2 LightRAG的优势

1) 引入图结构:将图结构引入文本索引及相关信息检索的环节中,图结构可以有效表示实体及其关系,有利于上下文的连贯性与丰富性。

2) 综合信息检索: 从所有文档中提取相互依赖的实体的完整上下文,以确保信息检索的综合性。相对于传统的RAG,可能只关注于Chunk后的局部文本,缺乏全局综合信息。

3) 增强检索效率: 提高基于图结构的知识检索效率,以显著减少响应时间。

4) 新数据的快速适配: 能够快速适应新的数据更新,确保系统在动态环境中保持相关性。

5) 减少检索开销: 相对于GraphRAG以社区遍历的方法,LightRAG专注于实体和关系的检索,进而减少开销。

2.3 LightRAG的框架


LightRAG将基于图结构的文本索引(graph-based text indexing)无缝地集成到一个双层检索框架(dual-level retrieval framework)中,因此能够提取实体间复杂的内部关系,提高响应的丰富性和连贯性。

双层检索策略包括低级检索和高级检索,其中低级检索重点关注特定实体及其关系的准确信息,高级检索则包含了广泛的主题信息。

此外,通过将图结构与向量表征相结合,LightRAG促进了相关实体和关系的有效检索,同时基于结构化的知识图谱中相关的信息,增强了结果的全面性。

LightRAG无需重复构建整个索引,降低了计算成本且加速了适配,而且其增量更新算法保障了新数据的及时整合。

2.3.1 基于图的文本索引

1) 实体及关系抽取:LightRAG先将大文本切分为小文本,然后利用LLM识别并抽取小文本中各种实体及其关系,此举可便于创建综合的知识图谱,prompt示例如下:

2) 使用LLM性能分析功能生成键值对:使用LLM提供的性能分析函数,为每个实体及每条关系生成一个文本键值对(K, V),其中K是一个单词或短语,便于高效检索,V是一个文本段落,用于文本片段的总结

3) 去重以优化图操作:通过去重函数识别并合并来自不同段落的相同实体和关系。有效地减少了与图操作相关的开销,通过最小化图的大小,从而实现更高效的数据处理。

2.3.2 双层检索机制

1) 在细节层和抽象层分别生成查询键:具体查询以细节为导向,许精确检索特点节点或边相关信息;抽象查询更加概念化,涵盖更广泛的主题、摘要,其并非与特定实体关联。

2) 双层检索机制:低级检索聚焦于检索特定实体及其属性或关系信息,旨在检索图谱中指定节点或边的精确信息;高级检索处理更广泛的主题,聚合多个相关实体和关系的信息,为高级的概念及摘要提供洞察力。

3) 集成图以及向量以便高效检索:通过图结构和向量表示,使得检索算法有效地利用局部和全局关键词,简化搜索过程并提高结果的关联性。具体分为如下步骤:

a. 查询关键词提取:针对给定的问题,LightRAG的检索算法首先分别提取局部查询关键词和全部查询关键词

关键词提取的prompt如下:

b. 关键词匹配:检索算法使用向量数据库来匹配局部查询关键词与候选实体,以及全局查询关键词与候选关系(与全局关键词关联)

c. 增强高阶关联性: LightRAG进一步收集已检索到的实体或关系的局部子图,如实体或关系的一跳邻近节点

2.3.3 检索增强回答生成

1) 使用已检索信息: 利用已检索的信息,包括实体名、实体描述、关系描述以及原文片段,LightRAG使用通用的LLM来生成回答。

2) 上下文集成及回答生成: 将查询串与上下文进行整合,调用LLM生成答案。

2.3.4 整体过程示例

3. 实验

3.1 数据源

从UltraDomain基准中选取了4个数据集,分别包括农业、计算机科学、法律、混合集,每个数据集包含60W-500W个token。

3.2 问题生成

为了评估LightRAG的性能,首先通过LLM生成5个RAG用户,且为每个用户生成5个任务。每个用户均具有描述信息,详细说明了他们的专业知识和特征,以引发他们提出相关问题。每个用户任务也具有描述信息,强调其中一个用户在于RAG交互时的潜在意图。针对每个用户任务的组合,LLM生成5个需要理解整个数据集的问题。因此,每个数据集共产生125个问题。

问题生成的prompt如下:

3.3 基线模型

选取的4个基线模型包括Naive RAG, RQ-RAG, HyDE, GraphRAG。

3.4评价维度及细节

实验中,向量检索采用nano 向量库,LLM选择GPT-4o-mini,每个数据集的分块大小为1200,此外收集参数(gleaning parameter,目的在于仅通过1轮LLM无法完全提取对应的实体或关系,因此该参数旨在增加多次调用LLM)设置为1。

评价标准采用基于LLM的多维度比较方法,使用GPT-4o-mini针对LightRAG与每个基线的响应进行排名。主要包含如下4个维度:全面性(回答多大程度解决了问题的所有方面和细节)、多样性(与问题相关的不同观点,答案的多样性和丰富性如何)、接受度(答案是否有效使读者理解主题并做出明确判断)、整体评价(评估前三个标准的累积评价)。

评价prompt如下:

3.5 实验结果

3.5.1 与基线RAG方法比较

3.5.2 双层检索及基于图结构的索引增强消融结果

3.5.3 具体示例研究

3.5.4 与GraphRAG的成本比较

4. 整体工作流

图片建议放大,看的更清楚~

LightGraph的源码可读性非常强,建议看官们可以基于上面这张流程图,逐步调试LightGraph,以了解其检索和生成两个模块的具体细节。

如果源码层面有问题的话,可以私信或评论进一步交流~

5.总结

一句话足矣~

本文针对开源的LightRAG论文研读以及原理分析,包括核心模块、框架的整体工作流程等内容。

如果想免费获取使用GPT-4o-mini的api接口,以及对原理或源码不清楚的看官,可私信或评论沟通。

6.参考

1) LightGraph论文地址: https://arxiv.org/pdf/2410.05779v1

2) LightGraph源码地址:https://github.com/HKUDS/LightRAG

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容