数据服务平台

数据平台包括两个方面,一个是架构平台,包括各种系统的搭建与维护,例如hdfs/hive/spark等,另一个就是这次要是的,服务平台。

作用

数据仓库建设,数据使用的辅助/后盾。
对于外部用户(分析师,项目团队)来说,报表/元数据是重要的,通过这两个系统,可以很容易的知道数据的基本情况以及统计结果。
对于内部用户(数据团队)来说,调度系统/质量监控是必不可少的,调度系统可以让任务准时的完成,质量监控可以保证提前发现数据问题。

报表/查询系统

展示出来的数据才有意义。所以要把分析结果正确合理的展示出来,表格,图标,热力图,漏斗图,对于不同的数据用合适的方式展示出来,让数据理解起来更容易。
除了研发之外,分析师,数据pm,都需要自己查看数据。而离线/实时两种数据场景中,需要使用比如mysql/hive/kylin/druid/clickhouse等工具,对于用户来说,需要知道这四种平台的使用方法,所以需要一个统一的系统,除了例行报表的数据/图表展示之外,还要做到屏蔽不同数据引擎,让用户在一个界面轻易的查多个平台甚至跨平台的数据。

调度系统

保证任务的稳定执行。
众多计算逻辑,包括hql,Java程序,python程序,spark程序,需要在一定条件下顺序执行,可能是时间驱动:每天3点开始执行,可能是条件驱动:上游任务都执行完再进行当前步骤。在这个背景下,调度系统就产生了。
调度系统不仅能做到最基本的版本管理控制,控制任务按条件执行,对于数据系统来说,数据的修改往往伴随着一系列下游的任务执行,那么就需要有级连筛选执行的能力。另外,对任务的执行情况需要有监控,及早发现任务异常。

元数据

数据的说明书。
描述数据的数据,包括表的基本信息(表层级,说明,字段内容,建表语句,存储位置等),数据信息(数据示例,数据类型,枚举值列举举例,数值盒图展示),增长信息(日新增条数,数据量级),数据血统(数据流转路径)等。通过查看元数据系统,就可以知道表的详情以及作用。

数据质量

发现数据问题。
我们无法保证数据不会出问题,但是我们一定要先发现问题并排查原因。不要等项目发现问题了找我们问,这样就会比较被动。
通过以下方面对数据进行监控检查。

  • 表基本数据
    表大小,条数的同比环比
  • 原始数据检查
    日志数据是否符合规律,比如枚举类型的是否在已知值中,数值值是否超过常识。
  • 多维分析
    先全部然后逐渐细粒度的多维度同环比。查看哪个维度的什么值波动比较大。
  • 跨数据源核对
    同一个数据,在不同存储介质中(结果数据由hive倒入mysql),看两份数据的对比情况。

小结

在工具平台的共同努力下,更好的处理/使用数据,提供良好的数据服务。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • Zookeeper用于集群主备切换。 YARN让集群具备更好的扩展性。 Spark没有存储能力。 Spark的Ma...
    Yobhel阅读 7,395评论 0 34
  • 【什么是大数据、大数据技术】 大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法在合理时间内通过传统的应...
    kimibob阅读 2,794评论 0 51
  • 是的,漂亮! 今天被这个太经常使用的词语触动到内心,是的,漂亮!多数使用这个词,会对长得好看的女孩的夸赞。而我们大...
    泷卉阅读 234评论 0 0
  • 别人的周末 你的周末
    福小喵FUFUCAT阅读 291评论 6 3
  • 2018.3.22 禮拜四 讀完《白鹿原》的話劇本 陳忠實獲茅盾文學獎的長篇小說《白鹿原》講的是以白嘉軒和鹿子霖兩...
    Hollyiiiee阅读 230评论 0 0