m基于HOG特征提取和GA优化GRNN网络的交通标志检测和识别算法matlab仿真

1.算法仿真效果

matlab2022a仿真结果如下:


2.算法涉及理论知识概要

2.1 遗传算法

遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉,变异过程产生更适应环境的新一代“染色体”群。这样,一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解。


其主要步骤如下:


1.初始化


选择一个群体,即选择一个串或个体的集合bi,i=1,2,...n。这个初始的群体也就是问题假设解的集合。一般取n=30-160。


通常以随机方法产生串或个体的集合bi,i=1,2,...n。问题的最优解将通过这些初始假设解进化而求出。


2.选择


根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。


给出目标函数f,则f(bi)称为个体bi的适应度。以


为选中bi为下一代个体的次数。


显然.从式(3—86)可知:


(1)适应度较高的个体,繁殖下一代的数目较多。


(2)适应度较小的个体,繁殖下一代的数目较少;甚至被淘汰。


这样,就产生了对环境适应能力较强的后代。对于问题求解角度来讲,就是选择出和最优解较接近的中间解。


3.交叉


对于选中用于繁殖下一代的个体,随机地选择两个个体的相同位置,按交叉概率P。在选中的位置实行交换。这个过程反映了随机信息交换;目的在于产生新的基因组合,也即产生新的个体。交叉时,可实行单点交叉或多点交叉。



2.2hog特征提取

HOG特征提取方法就是将一个image(你要检测的目标或者扫描窗口):


1)灰度化(将图像看做一个x,y,z(灰度)的三维图像);


2)采用Gamma校正法对输入图像进行颜色空间的标准化(归一化);目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰;


3)计算图像每个像素的梯度(包括大小和方向);主要是为了捕获轮廓信息,同时进一步弱化光照的干扰。


4)将图像划分成小cells(例如6*6像素/cell);


5)统计每个cell的梯度直方图(不同梯度的个数),即可形成每个cell的descriptor;


6)将每几个cell组成一个block(例如3*3个cell/block),一个block内所有cell的特征descriptor串联起来便得到该block的HOG特征descriptor。


7)将图像image内的所有block的HOG特征descriptor串联起来就可以得到该image(你要检测的目标)的HOG特征descriptor了。这个就是最终的可供分类使用的特征向量了。



2.3 GRNN

广义回归神经网络是径向基神经网络的一种,GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后普收敛于样本量集聚较多的优化回归,样本数据少时,预测效果很好,还可以处理不稳定数据。虽然GRNN看起来没有径向基精准,但实际在分类和拟合上,特别是数据精准度比较差的时候有着很大的优势。


GRNN是RBF的一种改进,结构相似。区别就在于多了一层求和层,而去掉了隐含层与输出层的权值连接(对高斯权值的最小二乘叠加)。



1.输入层为向量,维度为m,样本个数为n,线性函数为传输函数。


2.隐藏层与输入层全连接,层内无连接,隐藏层神经元个数与样本个数相等,也就是n,传输函数为径向基函数。


3.加和层中有两个节点,第一个节点为每个隐含层节点的输出和,第二个节点为预期的结果与每个隐含层节点的加权和。


4.输出层输出是第二个节点除以第一个节点。


在GRNN神经网络中,一旦确立了学习样本数据后,只需要调整一个参数“光滑因子”即可确定其网络结构和权值,因此训练GRNN网络要比传统的神经网络更加便捷。所以选择GRNN。







3.MATLAB核心程序

if  isempty(X4) == 0 & isempty(X5) == 1 & isempty(X6) == 1;

ftest  = func_feature2(X4);

yout   = round(net2(ftest'));


figure;

subplot(121);

imshow(X3);

subplot(122);

imshow(X4);

if yout == 1

title('识别结果为:非机动车行驶');    

end

if yout == 2

title('减速让车');    

end

if yout == 3

title('禁止鸣笛');    

end

if yout == 4

title('禁止左转');    

end

if yout == 5

title('慢');    

end

if yout == 6

title('人行通道');    

end

if yout == 7

title('限制速度');    

end

if yout == 8

title('右转');    

end

if yout == 9

title('注意行人');    

end  



end

if  isempty(X4) == 0 & isempty(X5) == 0 & isempty(X6) == 1;

ftest   = func_feature2(X4);

yout1   = round(net2(ftest'));

ftest   = func_feature2(X5);

yout2   = round(net2(ftest'));


figure;

subplot(131);

imshow(X3);

subplot(132);

imshow(X4);

if yout1 == 1

title('识别结果为:非机动车行驶');    

end

if yout1 == 2

title('减速让车');    

end

if yout1 == 3

title('禁止鸣笛');    

end

if yout1 == 4

title('禁止左转');    

end

if yout1 == 5

title('慢');    

end

if yout1 == 6

title('人行通道');    

end

if yout1 == 7

title('限制速度');    

end

if yout1 == 8

title('右转');    

end

if yout1 == 9

title('注意行人');    

end  



subplot(133);

imshow(X5);

if yout2 == 1

title('识别结果为:非机动车行驶');    

end

if yout2 == 2

title('减速让车');    

end

if yout2 == 3

title('禁止鸣笛');    

end

if yout2 == 4

title('禁止左转');    

end

if yout2 == 5

title('慢');    

end

if yout2 == 6

title('人行通道');    

end

if yout2 == 7

title('限制速度');    

end

if yout2 == 8

title('右转');    

end

if yout2 == 9

title('注意行人');    

end  



end

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容