浅层学习和深度学习 概念&区别

浅层学习
由于人工神经网络的反向传播算法(也叫Back Propagation算法或者BP算法)的发明,给机器学习带来了希望,掀起了"基于统计模型"的机器学习热潮。这个热潮一直持续到今天。人们发现,利用BP算法可以让一个人工神经网络模型从大量训练样本中学习出统计规律,从而对未知事件做预测。这种基于统计的机器学习方法比起过去基于人工规则的系统,在很多方面显示出优越性。这个时候的人工神经网络,虽然也被称作多层感知机(Multi-layer Perceptron),但实际上是一种只含有一层隐层节点的浅层模型。
到了90年代,各种各样的浅层机器学习模型相继被提出,例如支撑向量机(SVM,Support Vector Machines)、Boosting、最大熵方法(如LR,Logistic Regression)等。这些模型的结构基本上可以看成带有一层隐层节点(如SVM、Boosting),或没有隐层节点(如LR)。这些模型无论是在理论分析还是应用中都获得了巨大的成功。相比之下,由于理论分析的难度大,训练方法又需要很多经验和技巧,这个时期浅层人工神经网络反而相对沉寂。

深度学习
2006年,加拿大多伦多大学教授、机器学习领域的泰斗Geoffrey Hinton和他的学生Ruslan Salakhutdinov在《科学》上发表了一篇文章,开启了深度学习在学术界和工业界的浪潮。
这篇文章有两个主要观点:1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类;2)深度神经网络在训练上的难度,可以通过“逐层初始化”(layer-wise pre-training)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。
深度学习的实质
实质是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,“深度模型”是手段,“特征学习”是目的。
区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 五、Deep Learning的基本思想 假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,...
    dma_master阅读 1,704评论 1 2
  • 原文地址:http://www.cnblogs.com/subconscious/p/5058741.html 神...
    Albert陈凯阅读 5,491评论 0 48
  • 许多年没有去网吧了。不想去,那里烟味太大。再也不是那个可以玩通宵的自己了。 所以当他说去网吧时,我第一时间说,“不...
    小牧心阅读 213评论 0 0
  • 得不到的永远是最好的,这是人性,是与生俱来的习惯。 小孩子手里拿着翻斗车玩具,看见邻家小朋友拿个纸盒玩得不亦乐乎,...
    林小川阅读 223评论 0 0
  • 军训刚过,就听到某某转了专业,某某选择重新来过。在此之前,我们还在与高考殊死搏斗。没日没夜的星星点灯,没完没了的模...
    KriCL阅读 604评论 0 1