Java8新特性——强大的Stream

Stream API

了解Stream

Java8中有两个比较大的改变

  • Lambda表达式
  • Stream API (java.util.stream.*)

Stream是Java8中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找,过滤和映射数据等操作。使用Stream API对集合数据进行操作,就类似于使用SQL执行的数据库查询,也可以使用Stream API来并行操作,简而言之,Stream API提供了一种高效且易于使用的处理数据的方式。

区别

这里的Stream流和IO流是有区别的,这里是我们在数据源流向 目标源的时候,会产生一系列流水线式的中间操作,最后产生一个新流,同时原来的数据源是不会改变的。

这里的中间操作可能是:切片,排序,筛选等

什么是Stream

Stream是数据渠道,用于操作数据源(集合,数组等)所生成的元素序列,“集合讲的是数据,流讲的是计算”!

注意:

  • Stream 自己不会存储元素
  • Stream 不会改变源对象,相反,他们会返回一个持有结果的新Stream
  • Stream 操作是延迟的,这就意味着他们会等到需要结果的时候才执行的

Stream操作的三部曲

创建流

一个数据源(如:集合,数组),获取一个流

  • 通过Collection系列集合的 stream() 或者 parallelStream()获取流
List<String> list = new ArrayList<>();
Stream<String> stream =  list.stream();
  • 通过Arrays 中的静态方法,获取数组流
Employee[] employees = new Employee[10];
Stream<Employee> stream1 = Arrays.stream(employees);
  • 通过Stream中的静态方法of(),获取流
Stream<String> stream3 = Stream.of("aa", "bb", "cc");
  • 创建无限流
Stream<Integer> stream4 = Stream.iterate(0, (x) -> x +2 );

中间操作

一个中间操作链,对数据源的数据进行处理

终止操作

一个终止操作,执行中间操作链,并产生结果

Stream流的操作

多中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否者中间操作不会执行任何的处理,而在终止操作时一次性全部处理,这样被称为 惰性求值

筛选与切片

  • filter( Predicate p):接收Lambda,从流中排除某些元素
  • distinct():筛选,通过流所生成的hashCode()和equals()去除重复元素
  • limit(long maxSize):截断流,使其元素不超过给定数量
  • skip(long n):跳过元素,返回一个扔掉了前n个元素的流,若流中元素不足n个,则返回一个空流
      List<Employee> employees = Arrays.asList(
                new Employee("张三", 18, 3333),
                new Employee("李四", 38, 55555),
                new Employee("王五", 50, 6666.66),
                new Employee("赵六", 16, 77777.77),
                new Employee("田七", 8, 8888.88)
        );
        Stream<Employee> stream = employees.stream();
        stream.filter((x) -> x.getAge() > 30)
                .limit(2)
                .forEach(System.out::println);

映射

map接收Lambda,将元素转换成其它形式或提取信息,接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新元素。flatMap 接收一个函数作为参数,将流中的每个值都转换成另一个流,然后把所有流连接成一个流。

public static void test2() {
        List<String> list = Arrays.asList("aaa", "bbb", "ccc", "ddd");
        list.stream().map((x) -> x.toUpperCase()).forEach(System.out::println);
    }

排序

  • sorted():自然排序
  • sorted(Comparator com):定制排序
  public static void test3() {
        List<String> list = Arrays.asList("aaa", "bbb", "ccc", "ddd");
        // 自然排序,按照字典进行排序
        list.stream().sorted().forEach(System.out::println);

        // 定制排序
        List<Employee> employees = Arrays.asList(
                new Employee("张三", 18, 3333),
                new Employee("李四", 38, 55555),
                new Employee("王五", 50, 6666.66),
                new Employee("赵六", 16, 77777.77),
                new Employee("田七", 8, 8888.88)
        );
        employees.stream().sorted((e1, e2) -> {
            if(e1.getAge() == e2.getAge()) {
                return e1.getName().compareTo(e2.getName());
            } else {
                return Integer.compare(e1.getAge(), e2.getAge());
            }
        }).forEach(System.out::println);
    }

输出结果:

aaa
bbb
ccc
ddd
Employee{name='田七', age=8, salary=8888.88}
Employee{name='赵六', age=16, salary=77777.77}
Employee{name='张三', age=18, salary=3333.0}
Employee{name='李四', age=38, salary=55555.0}
Employee{name='王五', age=50, salary=6666.66}

终止操作

执行下列操作后,Stream流就会进行终止执行

查找与匹配

  • allMatch:检查是否匹配所有元素
  • anyMatch:检查是否至少匹配一个元素
  • noneMatch:检查是否一个都没匹配
  • findFirst:返回第一个元素
  • findAny:返回当前流中任意一个元素
  • count:返回流中元素的个数
  • max:返回当前流中最大值
  • min:返回当前流中最小值
  • forEach:内部迭代
public static void test4() {
        // 定制排序
        List<Employee> employees = Arrays.asList(
                new Employee("张三", 18, 3333),
                new Employee("李四", 38, 55555),
                new Employee("王五", 50, 6666.66),
                new Employee("赵六", 16, 77777.77),
                new Employee("田七", 8, 8888.88)
        );
        Boolean isAllMatch = employees.stream().allMatch((x) -> x.getAge() > 10);
        System.out.println("是否匹配所有元素:" + isAllMatch);

        Boolean isAnyMatch = employees.stream().anyMatch((x) -> x.getAge() > 10);
        System.out.println("是否匹配至少一个元素:" + isAnyMatch);
    }

规约

格式:reduce(T identity, BinaryOperator) / reduce(BinaryOperator)可以将流中元素反复结合,得到一个新值

这个reduce,其实有点类似于Hadoop中的mapReduce,先做map操作,然后做reduce操作

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5 ,6 ,7 ,8 , 9, 10);
// 按照下面的规则进行累加操作
// reduce的规约,就是把前面定义的起始值,作为了x
Integer num = list.stream().reduce(0, (x, y) -> x + y);
System.out.println(num);

收集

Collection将流转换成其它形式,接收一个Collector接口实现,用于给Stream中元素做汇总的方法

格式:collect(Collector c)

Collector接口实现方法的实现决定了如何对流执行收集操作(如收集到List,Set,Map)。但是Collectors实用类提供了很多静态方法,可以方便地创建常用收集器实例

   /**
     * 收集器
     */
    public static void test6() {
        List<Employee> employees = Arrays.asList(
                new Employee("张三", 18, 3333),
                new Employee("李四", 38, 55555),
                new Employee("王五", 50, 6666.66),
                new Employee("赵六", 16, 77777.77),
                new Employee("田七", 8, 8888.88)
        );
        // 收集放入list中
        List<String> list = employees.stream().map(Employee::getName).collect(Collectors.toList());
        list.forEach(System.out::println);
    }
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 229,001评论 6 537
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 98,786评论 3 423
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 176,986评论 0 381
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,204评论 1 315
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 71,964评论 6 410
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,354评论 1 324
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,410评论 3 444
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,554评论 0 289
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,106评论 1 335
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 40,918评论 3 356
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,093评论 1 371
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,648评论 5 362
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,342评论 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 34,755评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,009评论 1 289
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 51,839评论 3 395
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,107评论 2 375

推荐阅读更多精彩内容