Spark 基础(下篇)

上篇介绍了spark的突出特点以及基本框架,下面给大家介绍下spark的基本数据结构、spark任务调度的详细流程以及spark中stage的划分。

5. spark的基本数据类型

RDD、DataFrame和DataSet可以说是spark独有的三种基本的数据类型。Spark的核心概念是RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用。DataFrame是一个以RDD为基础的,但却是一种类似二维数据表的一种分布式数据集。与RDD不同的是,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。这样,spark就可以使用sql操作dataframe,像操作数据库中的表一样。目前,spark sql支持大多数的sql数据库的操作。Dataset可以认为是DataFrame的一个特例,主要区别是Dataset每一个record存储的是一个强类型值而不是一个Row。后面版本DataFrame会继承DataSet,DataFrame和DataSet可以相互转化,df.as[ElementType]这样可以把DataFrame转化为DataSet,ds.toDF()这样可以把DataSet转化为DataFrame。创建Dataframe的代码如下所示:

val df = spark.read.json("examples/src/main/resources/people.json")

// Displays the content of the DataFrame to stdout
df.show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+

创建Dataset的代码如下所示:

// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface
case class Person(name: String, age: Long)

// Encoders are created for case classes
val caseClassDS = Seq(Person("Andy", 32)).toDS()
caseClassDS.show()
// +----+---+
// |name|age|
// +----+---+
// |Andy| 32|
// +----+---+

// Encoders for most common types are automatically provided by importing spark.implicits._
val primitiveDS = Seq(1, 2, 3).toDS()
primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4)

// DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name
val path = "examples/src/main/resources/people.json"
val peopleDS = spark.read.json(path).as[Person]
peopleDS.show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+

6. spark scheduler(spark任务调度)

(1) 在使用spark-summit提交spark程序后,根据提交时指定(deploy-mode)的位置,创建driver进程,driver进程根据sparkconf中的配置,初始化sparkcontext。Sparkcontext的启动后,创建DAG Scheduler(将DAG图分解成stage)和Task Scheduler(提交和监控task)两个调度模块。
  (2) driver进程根据配置参数向resource manager(资源管理器)申请资源(主要是用来执行的executor),resource manager接到到了Application的注册请求之后,会使用自己的资源调度算法,在spark集群的worker上,通知worker为application启动多个Executor。
  (3) executor创建后,会向resource manager进行资源及状态反馈,以便resource manager对executor进行状态监控,如监控到有失败的executor,则会立即重新创建。
  (4) Executor会向taskScheduler反向注册,以便获取taskScheduler分配的task。
  (5) Driver完成SparkContext初始化,继续执行application程序,当执行到Action时,就会创建Job。并且由DAGScheduler将Job划分多个Stage,每个Stage 由TaskSet 组成,并将TaskSet提交给taskScheduler,taskScheduler把TaskSet中的task依次提交给Executor, Executor在接收到task之后,会使用taskRunner(封装task的线程池)来封装task,然后,从Executor的线程池中取出一个线程来执行task。
   就这样Spark的每个Stage被作为TaskSet提交给Executor执行,每个Task对应一个RDD的partition,执行我们的定义的算子和函数。直到所有操作执行完为止。如下图所示:

图4. Spark 任务调度流程

7. Spark作业调度中stage划分

Spark在接收到提交的作业后,DAGScheduler会根据RDD之间的依赖关系将作业划分成多个stage,DAGSchedule在将划分的stage提交给TASKSchedule,TASKSchedule将每个stage分成多个task,交给executor执行。task的个数等于stage末端的RDD的分区个数。因此对了解stage的划分尤为重要。
  在spark中,RDD之间的依赖关系有两种:一种是窄依赖,一种是宽依赖。窄依赖的描述是:父RDD的分区最多只会被子RDD的一个分区使用。宽依赖是:父RDD的一个分区会被子RDD的多个分区使用。如下图所示:

图5. RDD的两种依赖关系

  上图中,以一竖线作为分界,左边是窄依赖,右边是宽依赖。
  Stage的划分不仅根据RDD的依赖关系,还有一个原则是将依赖链断开,每个stage内部可以并行运行,整个作业按照stage顺序依次执行,最终完成整个Job。

实际划分时,DAGScheduler就是根据DAG图,从图的末端逆向遍历整个依赖链,一般是以一次shuffle为边界来划分的。一般划分stage是从程序执行流程的最后往前划分,遇到宽依赖就断开,遇到窄依赖就将将其加入当前stage中。一个典型的RDD Graph如下图所示:其中实线框是RDD,RDD内的实心矩形是各个分区,实线箭头表示父子分区间依赖关系,虚线框表示stage。针对下图流程首先根据最后一步join(宽依赖)操作来作为划分stage的边界,再往左走,A和B之间有个group by也为宽依赖,也可作为stage划分的边界,所以我们将下图划分为三个stage。

图6. Spark中的Stage划分示例
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容