机器学习材料领域

  1. Zachary W. Ulissi 主要做机器学习在催化中的应用

Chemical Engineering, Carnegie Mellon University 机器学习极强

Controlling selectivity of nanoscale interfaces with co-adsorbates and soft functionalizations

Machine-learning based approaches to accelerate materials screening

Bayesian methods for complex reaction mechanism reduction and elucidation

https://ulissigroup.cheme.cmu.edu/

  1. Edward Sargent 主要做光电材料,CO2还原等能源存储,太阳能电池,光电探测器,发光材料等(合作者Alán AspuruGuzik https://www.matter.toronto.edu/ 量子计算和能源功能材料)

the University of Toronto

https://light.utoronto.ca/

  1. Roger G. Melko 量子多体与机器学习

https://rgmelko.github.io/

  1. 周震 国家自然科学基金300w

南开大学

CO2还原

https://nfmlab.nankai.edu.cn/main.htm

  1. Alexander J. Norquist

哈佛大学

My research interests are focused on the use of exploratory reactions in materials discovery. Mild hydrothermal conditions are used to prepare new organic inorganic hybrid materials, with specific attention being paid to organically templated transitional metal selenites and tellurites. I am interested in understanding and optimizing the way in which exploratory reactions are conducted, using cheminformatics and machine learning approaches.

http://ww3.haverford.edu/chemistry/Norquist/

  1. Aron Walsh

Department of Materials at Imperial College London (UK)

His interests in materials modelling cover the chemistry and physics of functional solids, including metal oxides, chalcogenides, halides, and metal-organic frameworks.

http://wmd-group.github.io/group/ 主页上有许多有用的计算工具

  1. Nong Artrith

(合作者Keith T. Butler https://keeeto.github.io/about/,真正做机器学习的巨佬)

(合作者Seungwu Han http://mtcg.snu.ac.kr/,半导体、石墨烯、催化)

Department of Chemical Engineering, Columbia University

开发准确高效的机器学习模型

材料科学中机器学习的新描述符

结合实验和计算来理解纳米结构催化剂

http://nartrith.atomistic.net/team/

  1. OLEXANDR ISAYEV (专门做机器学习)

卡内基梅隆大学化学系

通过机器学习、分子建模和量子力学解决基本化学问题。

http://olexandrisayev.com/

  1. Rohit Batra

阿贡国家实验室的博士后

聚合物的自主设计

开发建模和机器学习技术来探索和实现材料的隐藏但有用的亚稳态相

使用机器学习加速衍射分析

https://www.anl.gov/profile/rohit-batra

  1. Alexandre Tkatchenko(材料物理机器学习)

University of Luxembourg

Intermolecular Interactions, Machine Learning, Chemical Physics, Materials Physics

https://wwwfr.uni.lu/recherche/fstm/dphyms/people/alexandre_tkatchenko

  1. Tim Mueller(能源纳米材料)

(合作者Aaron Gilad Kusne ,NIST员工 ,机器学习引导和优化实验,将先验科学知识融入机器学习https://www.nist.gov/people/aaron-gilad-kusne

(合作者Rampi Ramprasad,佐治亚理工材料学院,设计和发现新材料的计算和数据驱动(机器学习)方法,https://ramprasad.mse.gatech.edu/

faculty of Johns Hopkins

专门做计算

http://muellergroup.jhu.edu/

Miguel Alexandre Lopes Marques

Institut für Physik Martin-Luther-Universität Halle-Wittenberg

计算凝聚态,有时涉及材料科学、量子化学甚至生物物理学领域

https://www.tddft.org/bmg/index.php

  1. Gábor Csányi

http://www.eng.cam.ac.uk/profiles/gc121

  1. 薛德祯 西安交大 http://gr.xjtu.edu.cn/web/xuedezhen/
  1. 尹万建 http://www.comates.group/pi 重要

苏州大学能源学院

  1. 王金兰 东南大学 机器学习预测材料 (陆帅华√)

  2. 孙升 上海大学材料基因组

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容