TCP协议为什么可靠?

我们都知道,TCP和UDP协议的区别在于TCP可以提供可靠的网络数据传输,但UDP不能。

为什么TCP比较可靠呢?可能有人会回答,TCP是面向连接的,而UDP不是。连接是什么呢?它是一个像水管一样的东西,把所有的数据往连接里一放就保证了数据完整有序到达吗?其实不是的。

TCP/IP详解对整个数据传输过程有着详细的说明。我试着把其中关键的部分抽取出来,解释一下TCP协议到底是怎么保证传输的可靠性的。

建立连接

连接是什么

当提到连接,我们本能的会把它想成一根水管或者绳子,建立连接就是把这个水管或者绳子接起来。在通信的时候,我们会把连接想象成一个独立的通道,建立连接后所有的数据都顺着这个通道传输出去,对方就能收到有序完整的数据。但是实际上,因为各种各样的问题(硬件故障、网络阻塞、攻击等)的存在,网络传输通道本身就不可靠。
所以,TCP里的所谓连接不是一个通道,它只是通信双方建立的一个一对一的逻辑关系,让双方都明确对方是自己的通信目标。

既然双方只存在逻辑约定,数据仍然可能在传输过程中会出现错误、丢失等各种状况。那建立连接的意义是什么呢?举个例子:

如果一开始双方没有建立连接的那几步沟通,乙不知道甲到底要干什么,也不知道甲说的内容从什么地方开始到什么地方结束,甲乙就都没法确保这次通信的完整和正确。

更多的细节可以参考到底什么是TCP连接?

三次握手建立连接

TCP通过三次握手的方式建立连接,具体的过程见下图:

从图中可以看到,三次握手的过程其实是一个客户端和服务器各向对方发送一个数seq,并接收对方的ACK(收到的seq+1)的过程。第二次握手的数据里同时包含了服务器给客户端的ACK和服务器发出的seq。
三次握手以后,连接双方就同时进入ESTABLISHED(连接成功)状态,准备开始数据传输。

如果想知道三次握手建立连接,或者四次挥手断开连接的更多细节,可以看看简析TCP的三次握手与四次分手这篇文章。
另外,知乎上为什么TCP是三次握手,而不是两次或者四次握手这个问题,解释了三次握手的设计初衷,值得一看。

传输数据

ACK机制

由于通信过程的不可靠性,传输的数据不可避免的会出现丢失、延迟、错误、重复等各种状况,TCP协议为解决这些问题设计了一系列机制。
这个机制的核心,就是发送方向接收方发送数据后,接收方要向发送方发送ACK(回执)。如果发送方没接收到正确的ACK,就会重新发送数据直到接收到ACK为止。
比如:发送方发送的数据序号是seq,那么接收方会发送seq + 1作为ACK,这样发送方就知道接下来要发送序号为seq + 1的数据给接收方了。

我们来看看在不同的异常情况下,ACK机制是怎么工作的:

  • 数据丢失或延迟。发送方发送数据seq时会起一个定时器,如果在指定时间内没有接收到ACK seq + 1,就把数据seq再发一次。
  • 数据乱序。接收方上一个收到的正确数据是seq + 4,它返回seq + 5作为ACK。这时候它收到了seq + 7,因为顺序错了,所以接收方会再次返回seq + 5给发送方。
  • 数据错误。每一个TCP数据都会带着数据的校验和。接收方收到数据seq + 3以后会先对校验和进行验证。如果结果不对,则发送ACK seq + 3,让发送方重新发送数据。
  • 数据重复。接收方直接丢弃重复的数据即可。

ACK的优化

按照ACK机制,只要整个数据传输顺利结束,接收方就能收到完整有序的数据了。但是,如果我们针对每一个数据包都发送ACK,就会有大量的网络资源消耗在ACK的发送上,这不太划算的。于是,TCP设计了延迟ACK的机制。

这个机制其实很简单。客户端一次给服务器发送多个数据包,当服务器收到客户端的数据包时,不马上发送ACK,而是稍微等一小段时间。在这个过程中服务器可能能收到后续几个数据包,服务器就可以直接按照最后一个正确的数据发送ACK,减少发送ACK的总数。

除了延迟ACK的机制,TCP还做了很多对传输过程的优化,比如滑动窗口机制,比如慢启动机制。由于跟本文的主题无关,我就不在这里多说了,有兴趣的同学可以搜索来看看。


本人学识有限,文中难免有不严谨或者错误出现,希望各位读者能帮忙指出,感谢。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,457评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,837评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,696评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,183评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,057评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,105评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,520评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,211评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,482评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,574评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,353评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,213评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,576评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,897评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,174评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,489评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,683评论 2 335

推荐阅读更多精彩内容

  • 传输层-TCP, TCP头部结构 ,TCP序列号和确认号详解 TCP主要解决下面的三个问题 1.数据的可靠传输...
    抓兔子的猫阅读 4,454评论 1 46
  • 个人认为,Goodboy1881先生的TCP /IP 协议详解学习博客系列博客是一部非常精彩的学习笔记,这虽然只是...
    贰零壹柒_fc10阅读 5,042评论 0 8
  • 1、TCP状态linux查看tcp的状态命令:1)、netstat -nat 查看TCP各个状态的数量2)、lso...
    北辰青阅读 9,339评论 0 11
  • 套接字选项SO_RESUEADDR 即使端口处于2MSL状态,使用该选项,仍然能够在该端口建立连接。服务器常会设置...
    Myth52125阅读 1,393评论 0 0
  • 1.这篇文章不是本人原创的,只是个人为了对这部分知识做一个整理和系统的输出而编辑成的,在此郑重地向本文所引用文章的...
    SOMCENT阅读 13,028评论 6 174