一文贯通python 数据文件读取

不论是数据分析还是机器学习,乃至于高大上的AI,数据源的获取是所有过程的入口。 数据源的存在形式多为数据库或者文件,如果把数据库看做一种特殊格式的文件的话,即所有数据源都是文件。获得数据,就是读取文件的操作,文件有各种各样的格式即数据的组织形式,如何方便快捷地获取文件中的内容呢?

还是那句名言,life is short, just use python。

操作基础

在python 中,文件的操作分为面向目录和面向文件的,本质都是一样的。

面向目录的常见操作见下表:

目录操作

面向文件的常见操作见下表:

文件操作

在这些基本操作中,遍历目录并列出所有文件或者所需的目标文件是一种常见的操作。另外,需要注意的是打开文件时的模式,a,w,r,组合时的a+,w+,r+, 还有针对这六种模式在读取二进制文件时都要加上b。 在操作结束时,一定要显式关闭文件, 当然 通过with 语句的隐式关闭也是可以的。

对于作为数据内容源的文件而言, 可以简单的分为文本和非文本两类,就是内容本身是文字的和非文字的,对混合形式的文件一般可以采用分而治之的方式。对于数据分析而言,这里侧重于文件读取及数据的采集上。

文本文件读取

数据分析乃至文本分析都有涉及到文本文件的读取。文本文件也可以粗略的分为两类:纯内容文本和带格式约定的文本。纯内容文本就是相对纯粹的文本数据,例如新闻,博客文字内容,readme等等。带格式约定的文本是为了增强内容的功能性或者实现特定的语义,例如xml,html,json文件等。

纯内容文本文件

在读取纯内容文本的时候,就是一般的读文件基础操作,需要注意的是文本内容的字符集编码。判断文本文件属于哪个字符集,老码农还在用chardet,不知道现在有没有更先进的手段了。示例代码如下:

import chardet

f = open('/target_path/abel.txt',r)
my_data = f.read()
print chardet.detect(my_data)

chardet.detect 返回的是一个字典,包括编码类型和一个概率值。然后,就可以根据自己的需要进行编码转换了。

键值对相关的配置文件

在应用中经常有.ini文件来用于配置信息,在python 中可以利用ConfigParser来处理。ConfigParser 模块有RawConfigParser,ConfigParser 和SafeConfigParser 三种对象,一般采用ConfigParser即可。 一个应用的配置文件"myweb_config.ini"如下:

[myweb] 
url = http://%(host)s:%(port)s/myweb 
host = 192.168.1.100 
port = 8888

那么,使用ConfigParser的示例代码如下:

import ConfigParser 
  
mysql_config = ConfigParser.ConfigParser() 

cf.read("myweb_config.ini") 

print cf.get("portal", "url")

读取配置文件的一个常见使用情形是获取数据库的访问信息,以便从数据库中获取数据。

Json,XML和HTML文件

JSON是一种轻量级的数据交换格式。Json 文件采用完全独立于编程语言的文本格式来存储和表示数据。简洁和清晰的层次结构使得 JSON 成为理想的数据交换语言,是当前应用中主流的数据文件之一。 通过Python的json模块,可以将字符串形式的json数据转化为字典,也可以将Python中的字典数据转化为字符串形式的json数据。读取Json文件的示例代码如下:

 import json

 f = open("test.json", encoding='utf-8')  
 my_json = json.load(f)

然后就可以对my_json 以字典方式进行读取了,需要主要的是设置Json文件解码模式。

XML是一套定义语义标记的规则,将文档分成许多部分并对这些部分加以标识。同时,也是定义了用于定义其他与特定领域有关的、语义的、结构化的标记语言的句法语言。在python 中解析 XML 文件有三种方法:SAX,DOM,和ElementTree。ElementTree就像一个轻量级的DOM,示例代码如下:

import xml.etree.ElementTree as ET
my_xml_tree = ET.parse('/home/abel/face.xml')
print  my_xml_tree.getroot()

HTML 更是我们最常接触文件,基于web的数据爬虫,数据分析,数据挖掘等都会涉及到HTML文件的读写。在python中,用BS4 来对html 进行操作是非常方便的,同样也可以对xml 文件进行类似的操作,尤其是从网络中读取html,示例代码如下:

import requests
from bs4 import BeautifulSoup
res = requests.get("http://a.b.c/c?d=e") 
soup = BeautifulSoup(res.text)
print soup.find_all('a')

CSV文件

CSV文件就是一种由逗号隔开的文本文件,使用非常广泛,尤其是excel 文件可以另存为CSV文件,使分析CSV文件中的数据更加方便。 在Python中可以之间使用csv模块进行操作即可,示例代码如下:

import csv
csv_reader = csv.reader(open('mydata.csv', encoding='utf-8'))
for each_line in csv_reader:
   print each_line

常见的文本文件除了纯文本,键值对文件,json,xml,html,csv以外,就是大量的日志文件了,也可以选择的相关库或者自行分析读取, 进一步就可能进入到NLP的领域了。

媒体文件读取

媒体文件中的数据内容一般不是文本,是经过编码是数据,例如图片,音频,以及视频文件,为了简化可以暂不考虑其中的字幕情况。

图片文件

图片由各种各样的格式即数据内容的编解码方式,在python 中一般使用PIL 库对图片文件进行读取或者进一步的处理,示例代码如下:

from PIL import Image

im = Image.open('/home/abel/abc.jpg')

w, h = im.size

im.thumbnail((w/2, h/2))

im.save('/home/abel/abc_thumbnail.jpg', 'jpeg')

这个一个获取一个图片文件缩略图的小例子。 PIL是很强大的,提供了几乎所有的图像基本操作,例如改变图像大小,旋转图像,图像格式转换,色场空间转换,图像增强,直方图处理,插值和滤波等等。当然,其他的一些科学计算库也提供了很多图像处理的功能,例如大名鼎鼎的OpenCV, 具体可以参见《7行python代码的人脸识别》一文。

音频MP3

和图片文件一样, 音频文件的编解码格式同样很多。以MP3为例,只要了解了MP3文件的编码格式,就可以通过Python直接对MP3中的文件信息进行读取了。如果不重复造轮子的话,python 对音频的支持库也有很多。就MP3而言,可以使用python 中的eye3D(http://http://eyed3.nicfit.net) 库来读取MP3 中的相关信息, 示例代码如下:

import eyed3

f_mp3 = eyed3.load("/users/hecom/xiangwang.mp3")
print f_mp3.tag.title
print f_mp3.info.time_secs

技术演进日新月异,老码农曾经使用过的PyMedia 好像很久没人维护了,至于mp3 文件的播放,可以使用的库同样很多,例如mp3play,pyaudio以及pygame等。对于音频文件的进一步处理一般就要涉及的语音识别和语音合成了。

视频MP4

视频可以粗略地看成音频,图片乃至文字的混合体了。在Python 中读取并处理视频文件,一般可以使用MoviePy库(https://github.com/Zulko/moviepy)。MoviePy是可用于视频编辑的基本操作(像剪切,合并,插入标题),视频合成(又名非线性编辑),视频处理,或者创建高级的效果。它可以读取和写入的最普通的视频格式,包括GIF。 示例代码如下:

from moviepy.editor import *

video = VideoFileClip("mybaby.mp4").subclip(50,60)

txt_clip = ( TextClip("My Son 2002",fontsize=70,color='white')
             .set_position('center')
             .set_duration(10) )

result = CompositeVideoClip([video, txt_clip]) 
result.write_videofile("mybaby_edited.mp4",fps=25)

这个小例子是将一个MP4提取其中50s至60s之间的数据并增加上一点文本信息生成一个新的MP4文件。MoviePy中提供了很多视频处理的方法和示例,并且于PIL,OpenCV,scikit Image,matplotlib等混合使用。另外,关于视频的摄取,python中也有vediocapture库的。

带格式编码的文档读取

我们常见的另一类文档如PDF,word,excel等也是一种混合文档,里面一般以文本为主,主要在显示方式上作了规则限定,文档中包含了关系显示的大量信息。当然,这些文档还可以嵌入媒体文件。粗浅地解释一下,为了理解的方便,可以把这些带格式编码的文档看作浏览器和html文本的结合体,这样文件中的某些逻辑处理就可以想象成JS的相关操作了。

PDF文件

PDF是一种非常好用的格式,它能够解析并显示与图片结合在一起的文本,并且具备一般性的不可编辑。在Python 中一般可以通过pdfminer(http://www.unixuser.org/~euske/python/pdfminer/) 或者pypdf 来读取pdf文件中的内容, 官网给出的示例代码如下:

from pdfminer.pdfparser import PDFParser
from pdfminer.pdfdocument import PDFDocument
from pdfminer.pdfpage import PDFPage
from pdfminer.pdfpage import PDFTextExtractionNotAllowed
from pdfminer.pdfinterp import PDFResourceManager
from pdfminer.pdfinterp import PDFPageInterpreter
from pdfminer.pdfdevice import PDFDevice

# Open a PDF file.
fp = open('mypdf.pdf', 'rb')
# Create a PDF parser object associated with the file object.
parser = PDFParser(fp)
# Create a PDF document object that stores the document structure.
# Supply the password for initialization.
document = PDFDocument(parser, password)
# Check if the document allows text extraction. If not, abort.
if not document.is_extractable:
    raise PDFTextExtractionNotAllowed
# Create a PDF resource manager object that stores shared resources.
rsrcmgr = PDFResourceManager()
# Create a PDF device object.
device = PDFDevice(rsrcmgr)
# Create a PDF interpreter object.
interpreter = PDFPageInterpreter(rsrcmgr, device)
# Process each page contained in the document.
for page in PDFPage.create_pages(document):
    interpreter.process_page(page)

除此之外,还可以采用命令行———— pdf2txt 直接调用pdf文件进行转换。

word 文件

word文档几乎是最常见的办公文件了,当时.docx文件的结构比较复杂,分为三层:Docment对象表示整个文档;Docment包含了Paragraph对象的列表,Paragraph对象用来表示文档中的段落;一个Paragraph对象包含Run对象的列表。 在python中 一般采用python-docx 库对word文件进行读写,简化起见,如果只关心word文件中的文本信息的话,示例代码如下:

import docx
doc = docx.Document('/home/abel/test.docx')
paras = doc.paragraphs
text_in_doc =[]
for each_p in paras:
    text_in_doc.append(each_p.text)

Python DocX目前是Python OpenXML的一部分,可以用它打开Word 2007及以后的文档,而用它保存的文档可以在Microsoft Office 2007/2010, Microsoft Mac Office 2008, Google Docs, OpenOffice以及Apple iWork 08中打开。

Excel 文件

python处理excel文件主要是第三方模块库xlrd、xlwt、xluntils和pyExcelerator等,还有人在这之上封装了很多更方便实用的库。这里使用朴实的xlrd(https://github.com/python-excel/xlrd/)来读取excel文件,示例代码如下:

import xlrd
myworkbook = xlrd.open_workbook('test.xls') # 打开xls文件
table = myworkbook.sheet_by_name(u'Sheet1')
nrows = table.nrows
for i in range(nrows):
    print table.row_values(i)[:10] 

这个小例子读取了test.xls 文件,打印出来Sheet1中各行的前十列。xlrd 是有局限的,无法读取excel中的一些对象,如:

  • 图表,图片,宏以及其他的嵌入对象
  • VBA,超链接,数据验证
  • 公式(结果除外),条件的格式化,注释等等

好在,我们关注的是excel中的数据内容,以便进行数据分析,这些局限无伤大雅。

一句话小结

文件数据源的读取是数据分析的入口,使用Python 读取各种文件格式中的内容,为进一步的数据分析或者数据清洗提供了方便。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容