用 TensorFlow 让你的机器人唱首原创给你听

Siraj 的视频
源码

今天想来看看 AI 是怎样作曲的。

本文会用 TensorFlow 来写一个音乐生成器。

当你对一个机器人说:我想要一种能够表达出希望和奇迹的歌曲时,发生了什么呢?

计算机会首先把你的语音转化成文字,并且提取出关键字,转化成词向量。

然后会用一些打过标签的音乐的数据,这些标签就是人类的各种情感。接着通过在这些数据上面训练一个模型,模型训练好后就可以生成符合要求关键词的音乐。

程序最终的输出结果就是一些和弦,他会选择最贴近主人所要求的情感关键词的一些和弦来输出。

当然你不只是可以听,也可以作为创作的参考,这样就可以很容易地创作音乐,即使你还没有做到刻意练习1万小时。

机器学习其实是为了扩展我们的大脑,扩展我们的能力。


DeepMind 发表了一篇论文,叫做 WaveNet, 这篇论文介绍了音乐生成和文字转语音的艺术。

通常来讲,语音生成模型是串联。这意味着如果我们想从一些文字的样本中来生成语音的话,是需要非常大量的语音片段的数据库,通过截取它们的一部分,并且再重新组装到一起,来组成一个完整的句子。

生成音乐也是同样的道理,但是它有一个很大的难点:就是当你把一些静止的组件组合到一起的时候,生成声音需要很自然,并且还要有情感,这一点是非常难的。

一种理想的方式是,我们可以把所有生成音乐所需要的信息存到模型的参数里面。也就是那篇论文里讲的事情。

我们并不需要把输出结果传给信号处理算法来得到语音信号,而是直接处理语音信号的波。

他们用的模型是 CNN。这个模型的每一个隐藏层中,每个扩张因子,可以互联,并呈指数型的增长。每一步生成的样本,都会被重新投入网络中,并且用于产生下一步。

我们可以来看一下这个模型的图。输入的数据,是一个单独的节点,它作为粗糙的音波,首先需要进行一下预处理,以便于进行下面的操作。

接着我们对它进行编码,来产生一个 Tensor,这个 Tensor 有一些 sample 和 channel。

然后把它投入到 CNN 网络的第一层中。这一层会产生 channel 的数量,为了进行更简单地处理。

然后把所有输出的结果组合在一起,并且增加它的维度。再把维度增加到原来的 channel 的数量。

把这个结果投入到损失函数中,来衡量我们的模型训练的如何。

最后,这个结果会被再次投入到网络中,来生成下一个时间点所需要的音波数据。

重复这个过程就可以生成更多的语音。

这个网络很大,在他们的 GPU 集群上需要花费九十分钟,并且仅仅只能生成一秒的音频。


接下来我们会用一个更简单的模型在 TensorFlow 上来实现一个音频生成器。

1.引入packages:

数据科学包 Numpy ,数据分析包 Pandas,tqdm 可以生成一个进度条,显示训练时的进度。

import numpy as np
import pandas as pd
import msgpack
import glob
import tensorflow as tf
from tensorflow.python.ops import control_flow_ops
from tqdm import tqdm
import midi_manipulation

我们会用到一种神经网络的模型 RBM-Restricted Boltzmann Machine 作为生成模型。
它是一个两层网络:第一层是可见的,第二层是隐藏层。同一层的节点之间没有联系,不同层之间的节点相互连接。每一个节点都要决定它是否需要将已经接收到的数据发送到下一层,而这个决定是随机的。

2.定义超参数:

先定义需要模型生成的 note 的 range

lowest_note = midi_manipulation.lowerBound #the index of the lowest note on the piano roll
highest_note = midi_manipulation.upperBound #the index of the highest note on the piano roll
note_range = highest_note-lowest_note #the note range

接着需要定义 timestep ,可见层和隐藏层的大小。

num_timesteps  = 15 #This is the number of timesteps that we will create at a time
n_visible      = 2*note_range*num_timesteps #This is the size of the visible layer. 
n_hidden       = 50 #This is the size of the hidden layer

训练次数,批量处理的大小,还有学习率。

num_epochs = 200 #The number of training epochs that we are going to run. For each epoch we go through the entire data set.
batch_size = 100 #The number of training examples that we are going to send through the RBM at a time. 
lr         = tf.constant(0.005, tf.float32) #The learning rate of our model

3.定义变量:

x 是投入网络的数据
w 用来存储权重矩阵,或者叫做两层之间的关系
此外还需要两种 bias,一个是隐藏层的 bh,一个是可见层的 bv

x  = tf.placeholder(tf.float32, [None, n_visible], name="x") #The placeholder variable that holds our data
W  = tf.Variable(tf.random_normal([n_visible, n_hidden], 0.01), name="W") #The weight matrix that stores the edge weights
bh = tf.Variable(tf.zeros([1, n_hidden],  tf.float32, name="bh")) #The bias vector for the hidden layer
bv = tf.Variable(tf.zeros([1, n_visible],  tf.float32, name="bv")) #The bias vector for the visible layer

接着,用辅助方法 gibbs_sample 从输入数据 x 中建立样本,以及隐藏层的样本:

gibbs_sample 是一种可以从多重概率分布中提取样本的算法。


它可以生成一个统计模型,其中,每一个状态都依赖于前一个状态,并且随机地生成符合分布的样本。

#The sample of x
x_sample = gibbs_sample(1) 
#The sample of the hidden nodes, starting from the visible state of x
h = sample(tf.sigmoid(tf.matmul(x, W) + bh)) 
#The sample of the hidden nodes, starting from the visible state of x_sample
h_sample = sample(tf.sigmoid(tf.matmul(x_sample, W) + bh)) 

4.更新变量:

size_bt = tf.cast(tf.shape(x)[0], tf.float32)
W_adder  = tf.mul(lr/size_bt, tf.sub(tf.matmul(tf.transpose(x), h), tf.matmul(tf.transpose(x_sample), h_sample)))
bv_adder = tf.mul(lr/size_bt, tf.reduce_sum(tf.sub(x, x_sample), 0, True))
bh_adder = tf.mul(lr/size_bt, tf.reduce_sum(tf.sub(h, h_sample), 0, True))
#When we do sess.run(updt), TensorFlow will run all 3 update steps
updt = [W.assign_add(W_adder), bv.assign_add(bv_adder), bh.assign_add(bh_adder)]

5.接下来,运行 Graph 算法图:

1.先初始化变量
with tf.Session() as sess:
    #First, we train the model
    #initialize the variables of the model
    init = tf.initialize_all_variables()
    sess.run(init)

首先需要 reshape 每首歌,以便于相应的向量表示可以更好地被用于训练模型。

    for epoch in tqdm(range(num_epochs)):
        for song in songs:
            #The songs are stored in a time x notes format. The size of each song is timesteps_in_song x 2*note_range
            #Here we reshape the songs so that each training example is a vector with num_timesteps x 2*note_range elements
            song = np.array(song)
            song = song[:np.floor(song.shape[0]/num_timesteps)*num_timesteps]
            song = np.reshape(song, [song.shape[0]/num_timesteps, song.shape[1]*num_timesteps])

2.接下来就来训练 RBM 模型,一次训练一个样本
            for i in range(1, len(song), batch_size): 
                tr_x = song[i:i+batch_size]
                sess.run(updt, feed_dict={x: tr_x})

模型完全训练好后,就可以用来生成 music 了。

3.需要训练 Gibbs chain

其中的 visible nodes 先初始化为0,来生成一些样本。
然后把向量 reshape 成更好的格式来 playback。

    sample = gibbs_sample(1).eval(session=sess, feed_dict={x: np.zeros((10, n_visible))})
    for i in range(sample.shape[0]):
        if not any(sample[i,:]):
            continue
        #Here we reshape the vector to be time x notes, and then save the vector as a midi file
        S = np.reshape(sample[i,:], (num_timesteps, 2*note_range))

4.最后,打印出生成的和弦
       midi_manipulation.noteStateMatrixToMidi(S, "generated_chord_{}".format(i))


综上,就是用 CNN 来参数化地生成音波,
用 RBM 可以很容易地根据训练数据生成音频样本,
Gibbs 算法可以基于概率分布帮我们得到训练样本。



历史技术博文链接汇总

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,386评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,142评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,704评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,702评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,716评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,573评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,314评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,230评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,680评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,873评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,991评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,706评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,329评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,910评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,038评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,158评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,941评论 2 355

推荐阅读更多精彩内容