Python数据可视化,还能画4维图???{上}

数据聚合、汇总和可视化是支撑数据分析领域的三大支柱。长久以来,数据可视化都是一个强有力的工具,被业界广泛使用,却受限于 2 维。分享这篇文章,将探索一些有效的多维数据可视化策略(范围从 1 维到 6 维)。

一、可视化介绍

描述性分析(descriptive analytics)是任何分析生命周期的数据科学项目或特定研究的核心组成部分之一。数据聚合(aggregation)、汇总(summarization)和可视化(visualization)是支撑数据分析领域的主要支柱。从传统商业智能(Business Intelligence)开始,甚至到如今人工智能时代,数据可视化都是一个强有力的工具;由于其能有效抽取正确的信息,同时清楚容易地理解和解释结果,可视化被业界组织广泛使用。然而,处理多维数据集(通常具有 2 个以上属性)开始引起问题,因为我们的数据分析和通信的媒介通常限于 2 个维度。在本文中,我们将探索一些有效的多维数据可视化策略(范围从 1 维到 6 维)。

二、可视化动机

「一图胜千言」

这是一句我们熟悉的非常流行的英语习语,可以充当将数据可视化作为分析的有效工具的灵感和动力。永远记住:「有效的数据可视化既是一门艺术,也是一门科学。」在开始之前,我还要提及下面一句非常相关的引言,它强调了数据可视化的必要性。

「一张图片的最大价值在于,它迫使我们注意到我们从未期望看到的东西。」

——John Tukey

三、快速回顾可视化

本文假设一般读者知道用于绘图和可视化数据的基本图表类型,因此这里不再赘述,但在本文随后的实践中,我们将会涉及大部分图表类型。著名的可视化先驱和统计学家 Edward Tufte 说过,数据可视化应该在数据的基础上,以清晰、精确和高效的方式传达数据模式和洞察信息。

结构化数据通常包括由行和特征表征的数据观测值或由列表征的数据属性。每列也可以被称为数据集的某特定维度。最常见的数据类型包括连续型数值数据和离散型分类数据。因此,任何数据可视化将基本上以散点图、直方图、箱线图等简单易懂的形式描述一个或多个数据属性。本文将涵盖单变量(1 维)和多变量(多维)数据可视化策略。这里将使用 Python 机器学习生态系统,我们建议先检查用于数据分析和可视化的框架,包括 pandas、matplotlib、seaborn、plotly 和 bokeh。

闲话至此,让我们来看看可视化(和代码)吧!

别在这儿谈论理论和概念了,让我们开始进入正题吧。我们将使用 UCI 机器学习库中的 Wine Quality Data Set。这些数据实际上是由两个数据集组成的,这两个数据集描述了葡萄牙「Vinho Verde」葡萄酒中红色和白色酒的各种成分。本文中的所有分析都在我的 GitHub 存储库中,你可以用 Jupyter Notebook 中的代码来尝试一下!

我们将首先加载以下必要的依赖包进行分析。

我们通过合并有关红、白葡萄酒样本的数据集来创建单个葡萄酒数据框架。我们还根据葡萄酒样品的质量属性创建一个新的分类变量 quality_label。现在我们来看看数据前几行。

wines.head()

葡萄酒质量数据集

很明显,我们有几个葡萄酒样本的数值和分类属性。每个观测样本属于红葡萄酒或白葡萄酒样品,属性是从物理化学测试中测量和获得的特定属性或性质。如果你想了解每个属性(属性对应的变量名称一目了然)详细的解释,你可以查看 Jupyter Notebook。让我们快速对这些感兴趣的属性进行基本的描述性概括统计。

subset_attributes = ['residual sugar', 'total sulfur dioxide', 'sulphates',

                    'alcohol', 'volatile acidity', 'quality']

rs = round(red_wine[subset_attributes].describe(),2)

ws = round(white_wine[subset_attributes].describe(),2)

pd.concat([rs, ws], axis=1, keys=['Red Wine Statistics', 'White Wine Statistics'])

葡萄酒类型的基本描述性统计

比较这些不同类型的葡萄酒样本的统计方法相当容易。注意一些属性的明显差异。稍后我们将在一些可视化中强调这些内容。1.单变量分析

单变量分析基本上是数据分析或可视化的最简单形式,因为只关心分析一个数据属性或变量并将其可视化(1 维)。

可视化 1 维数据(1-D)

使所有数值数据及其分布可视化的最快、最有效的方法之一是利用 pandas 画直方图(histogram)。

wines.hist(bins=15, color='steelblue', edgecolor='black', linewidth=1.0,

          xlabelsize=8, ylabelsize=8, grid=False)   

plt.tight_layout(rect=(0, 0, 1.2, 1.2)) 

将属性作为 1 维数据可视化

上图给出了可视化任何属性的基本数据分布的一个好主意。

让我们进一步可视化其中一个连续型数值属性。直方图或核密度图能够很好地帮助理解该属性数据的分布。

可视化 1 维离散分类型数据

现在我们继续分析更高维的数据。

2.多变量分析

多元分析才是真正有意思并且有复杂性的领域。这里我们分析多个数据维度或属性(2 个或更多)。多变量分析不仅包括检查分布,还包括这些属性之间的潜在关系、模式和相关性。你也可以根据需要解决的问题,利用推断统计(inferential statistics)和假设检验,检查不同属性、群体等的统计显著性(significance)。

可视化 2 维数据(2-D)

检查不同数据属性之间的潜在关系或相关性的最佳方法之一是利用配对相关性矩阵(pair-wise correlation matrix)并将其可视化为热力图。

# Correlation Matrix Heatmap

f, ax = plt.subplots(figsize=(10, 6))

corr = wines.corr()

hm = sns.heatmap(round(corr,2), annot=True, ax=ax, cmap="coolwarm",fmt='.2f',

                linewidths=.05)

f.subplots_adjust(top=0.93)

t= f.suptitle('Wine Attributes Correlation Heatmap', fontsize=14)

用相关性热力图可视化 2 维数据

热力图中的梯度根据相关性的强度而变化,你可以很容易发现彼此之间具有强相关性的潜在属性。另一种可视化的方法是在感兴趣的属性之间使用配对散点图。

基本上,在如上所述的可视化中,点被表征为连接的线段。每条垂直线代表一个数据属性。所有属性中的一组完整的连接线段表征一个数据点。因此,趋于同一类的点将会更加接近。仅仅通过观察就可以清楚看到,与白葡萄酒相比,红葡萄酒的密度略高。与红葡萄酒相比,白葡萄酒的残糖和二氧化硫总量也较高,红葡萄酒的固定酸度高于白葡萄酒。查一下我们之前得到的统计表中的统计数据,看看能否验证这个假设!

因此,让我们看看可视化两个连续型数值属性的方法。散点图和联合分布图(joint plot)是检查模式、关系以及属性分布的特别好的方法。

# Scatter Plot

plt.scatter(wines['sulphates'], wines['alcohol'],

            alpha=0.4, edgecolors='w')

plt.xlabel('Sulphates')

plt.ylabel('Alcohol')

plt.title('Wine Sulphates - Alcohol Content',y=1.05)

# Joint Plot

jp = sns.jointplot(x='sulphates', y='alcohol', data=wines,

                  kind='reg', space=0, size=5, ratio=4)

使用散点图和联合分布图可视化 2 维连续型数值数据

散点图在上图左侧,联合分布图在右侧。就像我们提到的那样,你可以查看联合分布图中的相关性、关系以及分布。

如何可视化两个连续型数值属性?一种方法是为分类维度画单独的图(子图)或分面(facet)。

# Using subplots or facets along with Bar Plots

fig = plt.figure(figsize = (10, 4))

title = fig.suptitle("Wine Type - Quality", fontsize=14)

fig.subplots_adjust(top=0.85, wspace=0.3)

# red wine - wine quality

ax1 = fig.add_subplot(1,2, 1)

ax1.set_title("Red Wine")

ax1.set_xlabel("Quality")

ax1.set_ylabel("Frequency")

rw_q = red_wine['quality'].value_counts()

rw_q = (list(rw_q.index), list(rw_q.values))

ax1.set_ylim([0, 2500])

ax1.tick_params(axis='both', which='major', labelsize=8.5)

bar1 = ax1.bar(rw_q[0], rw_q[1], color='red',

              edgecolor='black', linewidth=1)

# white wine - wine quality

ax2 = fig.add_subplot(1,2, 2)

ax2.set_title("White Wine")

ax2.set_xlabel("Quality")

ax2.set_ylabel("Frequency")

ww_q = white_wine['quality'].value_counts()

ww_q = (list(ww_q.index), list(ww_q.values))

ax2.set_ylim([0, 2500])

ax2.tick_params(axis='both', which='major', labelsize=8.5)

bar2 = ax2.bar(ww_q[0], ww_q[1], color='white',

              edgecolor='black', linewidth=1)

使用条形图和子图可视化 2 维离散型分类数据

虽然这是一种可视化分类数据的好方法,但正如所见,利用 matplotlib 需要编写大量的代码。另一个好方法是在单个图中为不同的属性画堆积条形图或多个条形图。可以很容易地利用 seaborn 做到。

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容