2.1 标准差的正确使用
一、标准差的主要作用是估计正常值的范围
实际应用中,估计观察值正常值范围应该用标准差(s),表示为“Mean ±SD”。此写法综合表达一组观察值的集中和离散特征的变异情况,说明样本平均数对观察值的代表性。s 的大或小说明数据取值的分散或集中。s与样本均数合用, 主要是在大样本调查研究中, 对正态或近似正态分布的总体正常值范围进行估计。如果不是为了正常值范围估计, 一般不用。当数据与正态分布相差很大,或者虽为正态分布, 但样本容量太小(小于30 或100),也不宜用估计正常值范围。
二、标准差还可用来计算变异系数(CV)
当两组观察值单位不同, 或两均数相差较大时, 不能直接用标准差比较其变异程度的大小, 须用变异系数系数来做比较。:
2.2 标准误的正确使用
一、标准误用来衡量抽样误差的大小和了解用样本平均数来推论总体平均数的可靠程度。
在抽样调查中,往往通过样本平均数来推论总体平均数,样本标准误 适用于正态或近似正态分布的数据, 是主要描述小样本试验中,样本容量相同的同质的多个样本平均均数间的变异程度的统计量。即如果多次重复同一个试验, 它们之间的变异程度用。显然它越小,样本平均数变异越小,越稳定,用样本平均数估计总体均数越可靠。因此,为说明它的稳定性、可靠性或通过几个对几组数据进行比较(这是科研论文中最常见的),应当用描述数据。实际应用中应该写成“平均数±标准误”或而英文表示为“Mean ±SE”的形式。
二、标准误还可以进行总体平均数的区间估计与点估计(置信区间)。
根据正态分布原理, 与 合用还可以给出正态总体平均数的可信区间估计即推论总体平均数的可靠区间,例如常用 (其中t0.05 (n-1) 为样本容量是n的t界值)表示总体均值的95%可信区间, 意指总体平均数有95%的把握在所给范围内。
三、标准误还可用来进行平均数间的显著性检验,从而判断平均数间的差别是否是由抽样误差引起的。
例如:某当地小麦良种的千粒重 =34克,现在从外地引入一新品种,通过多小区的田间试验得到千粒重的平均数 =35.2克,问新引进品种千粒重与当地良种有无显著差异?
新引进品种千粒重与当地良种有无显著差异实质是判断 与 的差别是否是有田间试验是抽样误差引起,所以要进行显著性检验,这里用t测验进行检验,
而 ,由于 ,故 ,所以认为新引进品种千粒重与当地良种千粒重的不同是由于田间试验是抽样误差引起,因此他们之间无显著差异。所以在进行平均数间的显著性检验是必须用到 。
总之,标准差和标准误最常用的统计量,二者都是衡量样本变量(观察值) 随机性的指标,只是从不同角度来反映误差,二者在统计推断和误差分析中都有重要的应用。如果没有标准差,人们就无法看出一组观察值间变异程度有多大,这些数字到底有无代表性,如果没有标准误又很难看出我们的样本平均数是否可以代表总体平均数。所以二者都非常重要。