js原型继承

在javascript中,每个函数都有一个原型属性prototype指向函数自身的原型,而由这个函数创建的对象也有一个proto属性指向这个原型,而函数的原型是一个对象,所以这个对象也会有一个proto指向自己的原型,这样逐层深入知道Object对象的原型(null),就形成了原型链。

图片.png

每个函数都是Function函数创建的对象,所以每个函数也有一个proto属性指向Function函数的原型。这里需要指正的是,真正形成原型链的是每个对象的proto属性,而不是函数的prototype属性,这是很重要的。

原型继承

基本模式

var Parent = function(){
    this.name = 'Parent';
}
Parent.prototype.getName = function(){
    return this.name;
}
Parent.prototype.obj={a:1};

var Child = function(){
    this.name='child';
}
Child.prototype = new Parent();
var parent = new Parent();
var child = new Child();

console.log(parent.getName()); //parent
console.log(child.getName()); //child

这种方法的原型继承图如下:

图片.png

这种方法优点很明显,实现十分简单,不需要任何特殊的操作;同时缺点也很明显,如果子类需要做跟父类构造函数中相同的初始化动作,那么就得在子类构造函数中再重复一遍父类中的操作:

var Parent = function(name){
    this.name = name || 'Parent';
}
Parent.prototype.getName = function(){
    return this.name;
}
Parent.prototype.obj={a:1};

var Child = function(name){
    this.name=name || 'child';
}
Child.prototype = new Parent();
var parent = new Parent('myParent');
var child = new Child('myChild');

console.log(parent.getName()); //myparent
console.log(child.getName()); //myChild

上面这种情况还只是需要初始化name属性,如果初始化工作不断增加,这种方式不是很方便,所以就有了下面这种改进方式:

借用构造函数

var Parent = function(name){
    this.name = name || 'parent' ;
} ;
Parent.prototype.getName = function(){
    return this.name ;
} ;
Parent.prototype.obj = {a : 1} ;

var Child = function(name){
    Parent.apply(this,arguments) ;
} ;
Child.prototype = new Parent() ;

var parent = new Parent('myParent') ;
var child = new Child('myChild') ;

console.log(parent.getName()) ; //myParent
console.log(child.getName()) ; //myChild

上面这种方法在子类构造函数中通过apply调用父类的构造函数进行相同的初始化工作,这样不管父类做了多少初始化工作,子类也可以执行同样的初始化工作。但是上面这种实现还存在一个问题,父类构造函数被执行了两次,一次是在子类构造函数中,一次是在赋值子类原型时,这是很多余的,我们还需要一次改进:

var Parent = function(name){
    this.name = name || 'parent' ;
} ;
Parent.prototype.getName = function(){
    return this.name ;
} ;
Parent.prototype.obj = {a : 1} ;

var Child = function(name){
    Parent.apply(this,arguments) ;
} ;
Child.prototype = Parent.prototype ;

var parent = new Parent('myParent') ;
var child = new Child('myChild') ;

console.log(parent.getName()) ; //myParent
console.log(child.getName()) ; //myChild

这样我们就只需要在子类构造函数中执行一次父类的构造函数,同时又可以继承父类原型中的属性,这比较符合原型的初衷,就是需要复用的内容放在原型中,我们也只是继承了原型中可复用的内容。上面这种方式的原型图如下:

图片.png

临时构造函数模式(圣杯模式)

上面借用构造函数模式最后改进的版本还是存在问题,它把父类的原型直接赋值给子类的原型,就会造成一个问题,就是如果对子类的原型做了修改,那么这个修改同时也会影响到父类的原型,进而影响父类对象,这个肯定不是大家所希望看到的,为了解决这个问题就有了临时构造函数模式。

var Parent = function(name){
    this.name = name || 'Parent';
}
Parent.prototype.getName = function(){
    return this.name;
}
Parent.prototype.obj={a:1};

var Child = function(name){
    Parent.apply(this,arguments);
}

var F = function(){}
F.prototype = Parent.prototype;
Child.prototype = new F();
var parent = new Parent('myParent');
var child = new Child('myChild');

console.log(parent.getName()); //myparent
console.log(child.getName()); //myChild
图片.png

很容易可以看出,通过在父类原型和子类原型之间加入一个临时的构造函数F,切断了子类原型和父类原型之间的联系,这样,当子类原型做修改时就不会影响到父类原型。

大神的做法

《javascript模式》中圣杯模式就结束了,可是不管上面哪种方法都有一个不容易被发现的问题。大家可以看到我在Parent的prototype属性中加入了一个obj对象字面量属性,但是一直没有用,我们在圣杯模式的基础上来看看下面这种情况:

var Parent = function(name){
    this.name = name || 'parent' ;
} ;
Parent.prototype.getName = function(){
    return this.name ;
} ;
Parent.prototype.obj = {a : 1} ;

var Child = function(name){
    Parent.apply(this,arguments) ;
} ;
var F = function(){} ;
F.prototype = Parent.prototype ;
Child.prototype = new F() ;

var parent = new Parent('myParent') ;
var child = new Child('myChild') ;

console.log(child.obj.a) ; //1
console.log(parent.obj.a) ; //1
child.obj.a = 2 ;
console.log(child.obj.a) ; //2
console.log(parent.obj.a) ; //2

在上面这种情况中,当我修改child对象obj.a的时候,同时父类原型中的obj.a也会被修改,这就发生了和共享原型同样的问题。出现这个情况是因为当访问child.obj.a的时候,我们会沿着原型链一直找到父类的prototype中,然后找到了obj属性,然后对obj.a进行修改。
这里有一个关键的问题,当对象访问原型中的属性时,原型中的属性对于对象来说是只读的,也就是说child对象可以读取obj对象,但是无法修改原型中obj对象引用,所以当child修改obj的时候并不会对原型中的obj产生影响,它只是在自身对象添加了一个obj属性,覆盖了父类原型中的obj属性。而当child对象修改obj.a时,它先读取了原型中obj的引用,这时候child.obj和Parent.prototype.obj是指向同一个对象的,所以child对obj.a的修改会影响到Parent.prototype.obj.a的值,进而影响到父类的对象。AngularJS中关于$scope嵌套的继承方式就是模仿Javascript中的原型继承来实现的。
根据上面的描述,只要子类对象中访问的原型跟父类原型是同一个对象,那么就会出现上面这种情况,所以我们可以对父类原型进行拷贝然后再赋值给子类原型,这样当子类修改原型中的属性时就是修改父类原型的一个拷贝,并不会影响父类原型,具体实现如下:

var deepClone = function(source,target){
    source = source || {} ;
    target = target || {};
    var toStr = Object.prototype.toString ,
        arrStr = '[object array]' ;
    for(var i in source){
        if(source.hasOwnProperty(i)){
            var item = source[i] ;
            if(typeof item === 'object'){
                target[i] = (toStr.apply(item).toLowerCase() === arrStr) ? [] : {} ;
                deepClone(item,target[i]) ;    
            }else{
                target[i] = item;
            }
        }
    }
    return target ;
} ;
var Parent = function(name){
    this.name = name || 'parent' ;
} ;
Parent.prototype.getName = function(){
    return this.name ;
} ;
Parent.prototype.obj = {a : '1'} ;

var Child = function(name){
    Parent.apply(this,arguments) ;
} ;
Child.prototype = deepClone(Parent.prototype) ;

var child = new Child('child') ;
var parent = new Parent('parent') ;

console.log(child.obj.a) ; //1
console.log(parent.obj.a) ; //1
child.obj.a = '2' ;
console.log(child.obj.a) ; //2
console.log(parent.obj.a) ; //1

综合上面的考虑,javascript继承的具体实现如下,这里只考虑了Child和Parent都是函数的情况下:

var deepClone = function(source,target){
    source = source || {} ;
    target = target || {};
    var toStr = Object.prototype.toString ,
        arrStr = '[object array]' ;
    for(var i in source){
        if(source.hasOwnProperty(i)){
            var item = source[i] ;
            if(typeof item === 'object'){
                target[i] = (toStr.apply(item).toLowerCase() === arrStr) ? [] : {} ;
                deepClone(item,target[i]) ;    
            }else{
                target[i] = item;
            }
        }
    }
    return target ;
} ;

var extend = function(Parent,Child){
    Child = Child || function(){} ;
    if(Parent === undefined)
        return Child ;
    //借用父类构造函数
    Child = function(){
        Parent.apply(this,argument) ;
    } ;
    //通过深拷贝继承父类原型    
    Child.prototype = deepClone(Parent.prototype) ;
    //重置constructor属性
    Child.prototype.constructor = Child ;
} ;

参考自:https://segmentfault.com/a/1190000000766541

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,390评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,821评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,632评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,170评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,033评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,098评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,511评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,204评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,479评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,572评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,341评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,213评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,576评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,893评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,171评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,486评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,676评论 2 335

推荐阅读更多精彩内容