TCP-IP协议详解(9) TCP连接

TCP协议与”流”通信中,我们概念性的讲解了TCP通信的方式。可以看到,TCP通信最重要的特征是:有序(ordering)和可靠(reliable)。有序是通过将文本流分段并编号实现的。可靠是通过ACK回复和重复发送(retransmission)实现的。这一篇文章将引入TCP连接(connection)的概念。

TCP连接

网络层在逻辑上提供了端口的概念。一个IP地址可以有多个端口。一个具体的端口需要IP地址和端口号共同确定(我们记为IP:port的形式)。一个连接为两个IP:port之间建立TCP通信。(一个常用的比喻为:TCP连接就像两个人打电话, IP为总机号码,port为分机号码)

参与连接的如果是两台电脑,那么两台电脑操作系统的TCP模块负责建立连接。每个连接有四个参数(两个IP,两个端口),来表明“谁在和谁通话”。每台电脑都会记录有这四个参数,以确定是哪一个连接。如果这四个参数完全相同,则为同一连接;如果这四个参数有一个不同,即为不同的连接。这意味着,同一个端口上可以有多个连接。内核中的TCP模块生成连接之后,将连接分配给进程使用。

一个端口上可以有多个连接

TCP连接是双向(duplex)的。在TCP协议与”流”通信中,我们所展示的TCP传输是单向的。双向连接实际上就是建立两个方向的TCP传输,所以概念上并不复杂。这时,连接的每一方都需要两个滑窗,以分别处理发送的文本流和接收的文本流。由于连接的双向性,我们也要为两个方向的文本流编号。这两个文本流的编号相互独立。为文本流分段和编号由发送方来处理,回复ACK则由接收的一方进行。

TCP片段的头部格式

在深入TCP连接之前,我们需要对TCP片段的头部格式有一些了解。我们知道,TCP片段分为头部和数据。数据部分为TCP真正传输的文本流数据。下面为TCP片段的头部格式:

来自wikipedia


先关注下面几点:

1. 一个TCP头部需要包含出发端口(source port)和目的地端口(destination port)。这些与IP头中的两个IP地址共同确定了连接。

2. 每个TCP片段都有序号(sequence number)。这些序号最终将数据部分的文本片段整理成为文本流。

3. ACK是一位(bit)。只有ACK位设定的时候,回复号(Acknowledgement number)才有效。ACK回复号说明了接收方期待接收的下一个片段,所以ACK回复号为最后接收到的片段序号加1。

很多时候,ACK回复“附着”在发送的数据片段中。TCP协议是双向的。比如A和B两个电脑。ACK回复是接收方回复给发送方 (比如A发送给B, B回复A)。但同时,B也可以是发送方,B有可能有数据发送给A,所以B就把ACK回复附着在它要发送给A的数据片段的头部。这样可以减少ACK所占用的交通流量。一个片段可以只包含ACK回复。一个纯粹的ACK回复片段不传送文本流,所以不消耗序列号。如果有下一个正常的数据片段,它的序号将与纯粹ACK回复片段的序号相同。

(ACK回复还可以“附着”在SYN片段和FIN片段)

4. ACK后面还有SYN和FIN,它们也各占据一位(bit)。我将在后面说明这两位。

连接的建立

在TCP协议与”流”通信中讨论的TCP传输需要一个前提:TCP连接已经建立。然而,TCP连接从无到有需要一个建立连接的过程。建立连接的最重要目是让连接的双方交换初始序号(ISN, Initial Sequence Number)。根据TCP协议的规定,文本流的第一个片段的序号不能是确定的数字(比如说1)。连接的双方各自随机生成自己的ISN,然后再利用的一定方式让对方了解。这样的规定是出于TCP连接安全考虑:如果以一个确定的数字作为初始的TCP序号,那么其他人很容易猜出接下来的序列号,并按照正确的序号发送“伪装”的TCP片段,以插入到文本流中。

ISN交换是通过SYN片段实现的。SYN片段由头部的SYN位表明,它的序号为发送方的ISN。该片段由连接的一方首先发给给另一方,我们将发送SYN的一方称为客户(client),而接收SYN的一方称为服务器(server)。我们使用ISN(c)表示client一方的ISN,使用ISN(s)表示server一方的ISN。随后,接收到SYN的server需要回复ACK,并发送出包含有server的ISN的SYN片段。下图为建立连接的过程,也就是经典的TCP三次握手(three-way handshaking)。两条竖直线分别为client和server的时间轴。每个箭头代表了一次TCP片段的单向传输。

青色为纯粹的ACK片段。整个过程的本质是双方互发含有自己的ISN的SYN片段。根据TCP传输的规则,接收到ISN的一方需要回复ACK,所以共计四片信息在建立连接过程中传输。之所以是三次握手 (而不是四次),是因为server将发送SYN和回复ACK合并到一个TCP片段中。我们以client方为例。client知道自己的ISN(也就是ISN(c))。建立连接之后,它也知道了对方的ISN(s)。此后,如果需要发送文本流片段,则编号为ISN(c) + 1, ISN(c) + 2 …。如果接收文本流片段,则期待接收ISN(s) + 1, ISN(s) + 2 …。

连接建立之后,连接的双方就可以按照TCP传输的方式相互发送文本流了。

连接的正常终结

一个连接建立之后,连接两端的进程可以利用该连接进行通信。当连接的一方觉得“我讲完了”,它可以终结连接中发送到对方方向的通信。连接最终通过四次握手(four-way handshaking)的方式终结,连接终结使用的是特殊片段FIN(FIN位为1的片段)。

我们可以看到,连接终结的过程中,连接双方也交换了四片信息(两个FIN和两个ACK)。在终结连接的过程中,TCP并没有合并FIN与ACK片段。原因是TCP连接允许单向关闭(half-close)。也就是说,TCP连接关闭了一个方向的传输,成为一个单向连接(half-duplex)。第二个箭头和第三个箭头传递必须分开,才能有空隙在开放的方向上继续传输。如果第二个箭头和第三个箭头合并在一起,那么,随着一方关闭,另一方也要被迫关闭。

第二和第三次握手之间,server可以继续单向的发送片段给client,但client不能发送数据片段给server。

(上面的终结从client先发起,TCP连接终结也可以从server先发起。)

在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

TIME_WAIT State


总结

TCP是连接导向的协议,与之对应的是像UDP这样的非连接导向的协议。连接能带来更好的传输控制,但也需要更多额外的工作,比如连接的建立和终结。

我们还初步了解了TCP的头部格式。应该注意到,许多时候我们将ACK片段“附着”在其他片段上。相对于纯粹的ACK片段,我们这样做节约了ACK所需的流量。事实上,由于ACK片段所需的ACK位和acknowledge number区域总是存在于TCP的头部,所以附着ACK片段的成本基本上等于0。


【TCP/IP详解】系列教程

互联网协议入门 1

互联网协议入门 2

TCP-IP协议详解(1)网络协议概观

TCP-IP协议详解(2) 以太网与WiFi协议

TCP-IP协议详解(3) IP/ARP/RIP/BGP协议

TCP-IP协议详解(4)IPv4与IPv6地址

TCP-IP协议详解(5)IP协议详解

TCP-IP协议详解(6) ICMP协议

TCP-IP协议详解(7) UDP协议

TCP-IP协议详解(8) TCP协议与流通信

TCP-IP协议详解(9) TCP连接

TCP-IP协议详解(10) TCP滑窗管理

TCP-IP协议详解(11) TCP重传

TCP-IP协议详解(12) TCP堵塞控制

TCP-IP协议详解(13) DNS协议

TCP-IP协议详解(14) CIDR与NAT

TCP-IP协议详解(15) HTTP协议概览

图解TCP-IP协议

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容