Flink状态管理和容错机制

Apache Flink® — Stateful Computations over Data Streams(数据流上的有状态计算)

一、有状态的流数据处理

1、有状态的计算?

计算任务的结果不仅仅依赖于输入,还依赖于它的当前状态,其实大多数的计算都是有状态的计算。
比如wordcount,给一些word,其计算它的count,这是一个很常见的业务场景。count做为输出,在计算的过程中要不断的把输入累加到count上去,那么count就是一个state。

2、传统的流计算系统缺少对于程序状态的有效支持

  • 状态数据的存储和访问;
  • 状态数据的备份和恢复;
  • 状态数据的划分和动态扩容;

在传统的批处理中,数据是划分为块分片去完成的,然后每一个Task去处理一个分片。当分片执行完成后,把输出聚合起来就是最终的结果。在这个过程当中,对于state的需求还是比较小的。

对于流计算而言,对State有非常高的要求,因为在流系统中输入是一个无限制的流,会运行很长一段时间,甚至运行几天或者几个月都不会停机。在这个过程当中,就需要将状态数据很好的管理起来。很不幸的是,在传统的流计算系统中,对状态管理支持并不是很完善。比如storm,没有任何程序状态的支持,一种可选的方案是storm+hbase这样的方式去实现,把这状态数据存放在Hbase中,计算的时候再次从Hbase读取状态数据,做更新在写入进去。这样就会有几个问题:

  • 流计算系统的任务和Hbase的数据存储有可能不在同一台机器上,导致性能会很差。这样经常会做远端的访问,走网络和存储;
  • 备份和恢复是比较困难,因为Hbase是没有回滚的,要做到Exactly onces 很困难。在分布式环境下,如果程序出现故障,只能重启Storm,那么Hbase的数据也就无法回滚到之前的状态。
    比如广告计费的这种场景,Storm+Hbase是是行不通的,出现的问题是钱可能就会多算,解决以上的办法是Storm+mysql,通过mysql的回滚解决一致性的问题。但是架构会变得非常复杂。性能也会很差,要commit确保数据的一致性。
  • 对于storm而言状态数据的划分和动态扩容也是非常难做。
    一个很严重的问题是所有用户都会在strom上重复的做这些工作,比如搜索,广告都要在做一遍,由此限制了部门的业务发展。

3、Flink丰富的状态访问和高效的容错机制

Flink在最早设计的时候就意识到了这个问题,并提供了丰富的状态访问和容错机制。如下图所示:

Flink并且提供了丰富的状态访问和高效的容错机制

二、Flink中的状态管理

按照数据的划分和扩张方式,Flink中大致分为2类:

  • Keyed States
  • Operator States
    image

1、Keyed States

Keyed States的使用

Flink也提供了Keyed States多种数据结构类型

Keyed States的动态扩容

2、Operator State

Operator States的使用

Operator States的数据结构不像Keyed States丰富,现在只支持List
Operator States多种扩展方式

Operator States的动态扩展是非常灵活的,现提供了3种扩展,下面分别介绍:

  • ListState:并发度在改变的时候,会将并发上的每个List都取出,然后把这些List合并到一个新的List,然后根据元素的个数在均匀分配给新的Task;
  • UnionListState:相比于ListState更加灵活,把划分的方式交给用户去做,当改变并发的时候,会将原来的List拼接起来。然后不做划分,直接交给用户;
  • BroadcastState:如大表和小表做Join时,小表可以直接广播给大表的分区,在每个并发上的数据都是完全一致的。做的更新也相同,当改变并发的时候,把这些数据COPY到新的Task即可

以上是Flink Operator States提供的3种扩展方式,用户可以根据自己的需求做选择。

使用Checkpoint提高程序的可靠性

用户可以根据的程序里面的配置将checkpoint打开,给定一个时间间隔后,框架会按照时间间隔给程序的状态进行备份。当发生故障时,Flink会将所有Task的状态一起恢复到Checkpoint的状态。从哪个位置开始重新执行。
Flink也提供了多种正确性的保障,包括:

  • AT LEAST ONCE;
  • Exactly once;

备份为保存在State中的程序状态数据
Flink也提供了一套机制,允许把这些状态放到内存当中。做Checkpoint的时候,由Flink去完成恢复。

从已停止作业的运行状态中恢复
当组件升级的时候,需要停止当前作业。这个时候需要从之前停止的作业当中恢复,Flink提供了2种机制恢复作业:

  • Savepoint:是一种特殊的checkpoint,只不过不像checkpoint定期的从系统中去触发的,它是用户通过命令触发,存储格式和checkpoint
    也是不相同的,会将数据按照一个标准的格式存储,不管配置什么样,Flink都会从这个checkpoint恢复,是用来做版本升级一个非常好的工具;
  • External Checkpoint:对已有checkpoint的一种扩展,就是说做完一次内部的一次Checkpoint后,还会在用户给定的一个目录中,多存储一份checkpoint的数据;

三、状态管理和容错机制实现

下面介绍一下状态管理和容错机制实现方式,Flink提供了3种不同的 StateBackend

  • MemoryStateBackend
  • FsStateBackend
  • RockDBStateBackend

用户可以根据自己的需求选择,如果数据量较小,可以存放到MemoryStateBackend和FsStateBackend中,如果数据量较大,可以放到RockDB中。

下面介绍HeapKeyedStateBackend和RockDBKeyedStateBackend

第一,HeapKeyedStateBackend

第二,RockDBKeyedStateBackend

Checkpoint的执行流程
Checkpoint的执行流程是按照Chandy-Lamport算法实现的。

Checkpoint Barrier的对齐

全量Checkpoint
全量Checkpoint会在每个节点做备份数据时,只需要将数据都便利一遍,然后写到外部存储中,这种情况会影响备份性能。在此基础上做了优化。

RockDB的增量Checkpoint

RockDB的数据会更新到内存,当内存满时,会写入到磁盘中。增量的机制会将新产生的文件COPY持久化中,而之前产生的文件就不需要COPY到持久化中去了。通过这种方式减少COPY的数据量,并提高性能。

四、阿里相关工作介绍

Flink在阿里的成长路线
阿里是从2015年开始调研Flink,2015年10月启动Blink项目,并完善Flink在大规模生产下的一些优化和改进。2016年双11采用了Blink系统,为搜索,推荐,广告业务提供服务。2017年5月Blink已成为阿里的实时计算引擎

阿里在状态管理和容错相关的工作

正在做的工作,基于State重构Window方面的一些优化,阿里也正在将功能做完善。后续将包括asynchronous Checkpoint的功能完善,并和社区进一步沟通和合作。帮助Flink社区完善相关方面的工作

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352