Map

Job类初始化JobClient实例,JobClient中生成JobTracker的RPC实例,这样可以保持与JobTracker的通讯,JobTracker的地址和端口等都是外部配置的,通过Configuration对象读取并且传入。

2.JobClient提交作业。

3.JobClient生成作业目录。

4.从本地拷贝MapReduce的作业jar文件(一般是自己写的程序代码jar)。

5.如果DistributedCache中有需要的数据,从DistributedCache中拷贝这部分数据。

6.根据InputFormat实例,实现输入数据的split,在作业目录上生成job.split和job.splitmetainfo文件。

7.将配置文件写入到作业目录的job.xml文件中。

8.JobClient和JobTracker通讯,提交作业。

9.JobTracker将job加入到job队列中。

10.JobTracker的TaskScheduler对job队列进行调度。

11.TaskTracker通过心跳和JobTracker保持联系,JobTracker收到后根据心跳带来的数据,判断是否可以分配给TaskTracker Task,TaskScheduler会对Task进行分配。

12.TaskTracker启动TaskRunner实例,在TaskRunner中启动单独的JVM进行Mapper运行。

13.Map端会从HDFS中读取输入数据,执行之后Map输出数据先是在内存当中,当达到阀值后,split到硬盘上面,在此过程中如果有combiner的话要进行combiner,当然sort是肯定要进行的。

14.Map结束了,Reduce开始运行,从Map端拷贝数据,称为shuffle阶段,之后执行reduce输出结果数据,之后进行commit的操作。

15.TaskTracker在收到commit请求后和JobTracker进行通讯,JobTracker做最后收尾工作。

16.JobTracker返回结果给JobClient,运行结束。

Map端机制

对于map端的输入,需要做如下的事情:

1.反射构造InputFormat.

2.反射构造InputSplit.

3.创建RecordReader.

4.反射创建MapperRunner(新api形式下是反射创建org.apache.hadoop.mapreduce.Mapper.Context).

对Map端输出,需要做如下的事情:

1.如果有Partitioner的话,反射构造Partitioner。

2.将key/value/Partitioner数据写入到内存当中。

3.当内存当中的数据达到一定阀值了,需要spill到硬盘上面,在spill前,需要进行排序,如果有combiner的话需要进行combiner。

4.sort的规则是先进行Partitioner的排序,然后再进行key的字典排序,默认的是快速排序。

5.当生成多个spill文件时,需要进行归并,最终归并成一个大文件

关于排序:

1.在内存中进行排序,整个数据的内存不会进行移动,只是再加上一层索引的数据,排序只要调整索引数据就可以了

2.多个spill文件归并到一个大文件时,是一个归并排序的过程,每一个spill文件都是按分区和key排序好的,所以归并完的文件也是按分区和key排序好的。

在进行归并的时候,也不是一次性的把所有的spill文件归并成一个大文件,而是部分spill文件归并成中间文件,然后中间文件和剩下的spill文件再进行一次归并,依次类推,这个的考虑还是因为一次归并文件太多的话IO消耗太大了,如下图:

Reduce端机制

1。ReduceTask有一个线程和TaskTracker联系,之后TaskTracker和JobTracker联系,获取MapTask完成事件

2. ReduceTask会创建和MapTask数目相等的拷贝线程,用于拷贝MapTask的输出数据,MapTask的数据一般都是非本地的

3. 当有新的MapTask完成事件时,拷贝线程就从指定的机器上面拷贝数据,是通过http的形式进行拷贝

4. 当数据拷贝的时候,分两种情况,当数据量小的时候就会写入内存当中,当数据量大的时候就会写入硬盘当中,这些工作分别由两个线程完成

5. 因为所有的数据都来自不同的机器,所以有多个文件,这些文件需要归并成一个文件,在拷贝文件的时候就会进行归并动作

6. 拷贝和归并过程统称为shuffle过程

Reduce端输出需要做如下的事情:

1.构造RecordWriter,这个是根据客户端设置的OutputFormat中getRecordWriter()方法得到

2.通过OutputFormat和RecordWriter将结果输出到临时文件中

3.Rudece进行commit过程,和TaskTracker进行通信,TaskTracker和JobTracker进行通信,然后JobTracker返回commit的指令,Reduce进行

commit,将临时结果文件重命名成最终的文件

4.commit成功后,kill掉其他的TaskAttempt

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容