Map集合、散列表和红黑树学习笔记

一、Map


1.1 Map和Collection

  • map是将键映射到值得对象,一个映射不能包含重复的键,每个键最多只能映射到一个值
  • map储存的元素是成对出现的,键唯一,值可以重复
  • Collection储存的元素是单独出现的,Set不可以重复,List可以重复

1.2 常用的一些功能

image.png

二、散列表的介绍


  • 链表和数组都可以按照人们的意愿来排列元素的次序,他们可以说是有序的(存储的顺序和取出的顺序是一致的),但想要获取某个元素就要遍历整个线性表,浪费大量时间
  • 散列表:不在意元素的顺序,能够快速的查找元素的数据

2.1 什么是散列表

在Java中,散列表由数组和链表组成。它的工作原理是为每个对象计算出一个散列码,将整个散列码与桶的数量作求余操作(或者hash&(n-1)),这个计算出的整数就是对象在散列表中的位置。

哈希表还有一个重要的属性: 负载因子(load factor),它用来衡量哈希表的 空/满 程度,一定程度上也可以体现查询的效率,计算公式为:

负载因子 = 总键值对数 / 箱子个数

负载因子越大,意味着哈希表越满,越容易导致冲突,性能也就越低。因此,一般来说,当负载因子大于某个常数(可能是 1,或者 0.75 等)时,哈希表将自动扩容。

哈希表在自动扩容时,一般会创建两倍于原来个数的箱子,因此即使 key 的哈希值不变,对箱子个数取余的结果也会发生改变,因此所有键值对的存放位置都有可能发生改变,这个过程也称为重哈希(rehash)。

哈希表的扩容并不总是能够有效解决负载因子过大的问题。假设所有 key 的哈希值都一样,那么即使扩容以后他们的位置也不会变化。虽然负载因子会降低,但实际存储在每个箱子中的链表长度并不发生改变,因此也就不能提高哈希表的查询性能。

2.2 散列冲突

有时候两个不同的对象计算出相同的hashCode,就储存在同一个桶上,这就是散列冲突。此时需要用该对象和桶上的对象进行比较。如果存在,不添加,不存在,添加。(JDK1.8中,桶的容量变成8时,会从链表变成红黑树)

如果散列表太满了,就需要对散列表再散列。创建一个新的桶,将原来的数据插入到新的桶中

装填因子(load factor)决定了什么时候扩容。负载因子越大,意味着哈希表越满,越容易导致冲突,链表变长,查询效率降低,性能也就越低。因此,一般来说,当负载因子大于某个常数(可能是 1,或者 0.75 等)时,哈希表将自动进行2倍扩容。负载因子越小,冲突发生的可能性小,但是导致散列表的稀疏程度越大,造成了空间的浪费。


三、什么是红黑树

利用二叉查找树的特性,可以快速查找到某个元素。但是如果数据是按升序或降序排列的,这是树就变成了链表。


image.png

红黑树是一种平衡树,它可以保证二叉树的均衡结构
只有遵循这些约束的才叫红黑树(背这个貌似没啥用):

  1. 红黑树是二叉搜索树。
  2. 根节点是黑色。
  3. 每个叶子节点都是黑色的空节点(NIL节点)。
  4. 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
  5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点(每一条树链上的黑色节点数量(称之为“黑高”)必须相等)。

3.1 由2-3树到红黑树

如果从代码角度去理解红黑树的旋转和变色,那么会有助于增加我们对红黑树的恐惧

2-3树的构建

构建过程:

  • 合并2-节点使其变成3-节点,继续扩充3-节点,将其变成4-节点
  • 从下到上,分解4-节点为3-节点...直至不能再分
  • (根据此过程可以快速将画出2-3树,然后修改成红黑树)

由2-3树脑补的红黑树的颜色表示:每个节点只有一条链接指向自己(从父节点到自己),将链接的颜色保存在表示节点的Node数据类型的boolean变量color中,若为true,说明这个节点是红色的

红黑树参考资料:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容